We demonstrate a substantial modulation of the optical properties of multilayer graphene (∼100 layers) using a simple device consisting of a multilayer graphene/polymer electrolyte membrane/gold film stack. Applying a voltage of 3–4 V drives the intercalation of anion [TFSI]− [ion liquid diethylmethyl(2-methoxyethyl)ammonium bis(trifluoromethylsulfonyl)imide [DEME][TFSI]] resulting in the reversible modulation of the properties of this optically dense material. Upon intercalation, we observe an abrupt shift of 35 cm−1 in the G band Raman mode, an abrupt increase in FTIR reflectance over the wavelength range from 1.67 to 5 μm (2000–6000 cm−1), and an abrupt increase in luminescent background observed in the Raman spectra of graphene. All of these abrupt changes in the optical properties of this material arise from the intercalation of the TFSI− ion and the associated change in the free carrier density (Δn = 1020 cm−3). Suppression of the 2D band Raman mode observed around 3 V corresponds to Pauli blocking of the double resonance Raman process and indicates a modulation of the Fermi energy of ΔEF = 1.1 eV. 
                        more » 
                        « less   
                    
                            
                            Effects of Graphene Interface on Potassiation in a Graphene–Selenium Heterostructure Cathode for Potassium-Ion Batteries
                        
                    
    
            Selenium (Se) cathodes are an exciting emerging high energy density storage system for potassium-ion batteries (KIB), where potassiation reactions are less understood. Here, we present an atomic-level investigation of a KxSe cathode enclosed in hexagonal lattices of carbon (C) characteristic of a layered graphene matrix and multiwalled carbon nanotubes (MW-CNTs). Microstructural changes directed by the graphene–substrate in the KxSe cathode are contrasted with those in the graphene-free cathode. Graphene’s binding affinity for long-chain polyselenides (Se3 = −2.82 eV and Se2 = −2.646 eV) at low K concentrations and ability to induce enhanced reactivity between Se and K at high K concentrations are investigated. Furthermore, intercalation voltage for graphene-enclosed KxSe cathode reaction intermediates is calculated with K2Se as the final discharged product. Our results indicate a single-step reaction near a voltage of 1.55 V between K and Se cathode. Findings in the paper suggest that operating at higher voltages (∼2 V) could result in the formation of reaction intermediates where intercalation/deintercalation of K could be a challenge, and therefore cause irreversible capacity losses in the battery. The primary issue here is the modulating favorability of graphene surface toward discharging of Se cathode due to its differential preferences for K–Se reaction intermediates. A comparison with a graphene-free cathode highlights the substantial changes a van der Waals (vdW) graphene interface can bring in the atomic structure and electrochemistry of the KxSe cathode. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10443129
- Date Published:
- Journal Name:
- ACS Applied Energy Materials
- ISSN:
- 2574-0962
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract There is great interest in exploiting van der Waals gaps in layered materials as confinement reaction vessels to template the synthesis of new nanosheet structures. The gallery spaces in multilayer graphene oxide, for example, can intercalate hydrated metal ions that assemble into metal oxide films during thermal oxidation of the sacrificial graphene template. This approach offers limited control of structure, however, and does not typically lead to 2D atomic‐scale growth of anisotropic platelet crystals, but rather arrays of simple particles directionally sintered into porous sheets. Here, a new graphene‐directed assembly route is demonstrated that yields fully dense, space‐filling films of tiled metal oxide platelet crystals with tessellated structures. The method relies on colloidal engineering to produce a printable “metallized graphene ink” with accurate control of metal loading, grain size/porosity, composition, and micro/nanomorphologies, and is capable of achieving higher metal–carbon ratio than is possible by intercalation methods. These tiled structures are sufficiently robust to create free standing papers, complex microtextured films, 3D shapes, and metal oxide replicas of natural biotextures.more » « less
- 
            A glucose biofuel cell is presented using laser induced 3D graphene (LIG) substrate integrated with catalytic active nanomaterials for harnessing the biochemical energy of glucose. The LIG anode comprised glucose dehydrogenase immobilized on reduced graphene oxide and multiwalled carbon nanotubes (RGO/MWCNTs) nanocomposite for glucose oxidation. The LIG cathode is modified with RGO/MWCNTs and silver oxide (Ag 2 O) nanocomposites for the reduction of oxygen. The assembled biofuel cell exhibited a linear peak power response up to 18 mM glucose with sensitivity of 0.63 μW mM -1 cm −2 and exhibited good linearity (r 2 = 0.99). The glucose biofuel cell showed an open-circuit voltage of 0.365 V, a maximum power density of 11.3 μW cm −2 at a cell voltage of 0.25 V, and a short-circuit current density of 45.18 μA cm −2 when operating in 18 mM glucose. Cyclic voltammetry revealed the bioanode exhibited similar linearity for the detection of glucose. These results demonstrate that LIG based bioelectrodes offer great promise for diverse applications in the development of hybrid biofuel cell and biosensor technology.more » « less
- 
            The fluoride ion is well suited to be the active species of rechargeable batteries, due to its small size, light weight, and high electronegativity. While existing F-ion batteries based on conversion chemistry suffer from rapid electrode degradation with cycling, those based on fluoride intercalation are currently less attractive then cation intercalation battery chemistries due to their low reversible energy densities. Here, using first-principles density-functional-theory calculations, we predict that layered electrides, such as Ca2N and Y2C — that have an electron occupying a lattice site — are promising hosts for fluoride intercalation, since their anionic electrons create large interstices. Our calculations indicate that anodes made from layered electrides can offer voltage up to –2.86 V vs. La2CoO4 cathode, capacity >250 mAh/g, and fast diffusion kinetics with migration barriers as low as 0.15 eV. These metrics compare favorably to popular Li-ion intercalation cathodes such as LiCoO2. Electrides open up a new space for designing fluorine intercalation batteries with good performance and cyclability.more » « less
- 
            null (Ed.)The fluoride ion is well suited to be the active species of rechargeable batteries, due to its small size, light weight, and high electronegativity. While existing F-ion batteries based on conversion chemistry suffer from rapid electrode degradation with cycling, those based on fluoride intercalation are currently less attractive then cation intercalation battery chemistries due to their low reversible energy densities. Here, using first-principles density-functional-theory calculations, we predict that layered electrides, such as Ca2N and Y2C – that have an electron occupying a lattice site – are promising hosts for fluoride intercalation, since their anionic electrons create large interstices. Our calculations indicate that anodes made from layered electrides can offer voltage up to −2.86 V vs. La2CoO4 cathode, capacity >250 mA h g−1, and fast diffusion kinetics with migration barriers as low as 0.15 eV. These metrics compare favorably to popular Li-ion intercalation cathodes such as LiCoO2. Electrides open up a new space for designing fluorine intercalation batteries with good performance and cyclability.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    