skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tight last-iterate convergence rates for no-regret learning in multi-player games.
https://arxiv.org/abs/2010.13724 We study the question of obtaining last-iterate convergence rates for no-regret learning algorithms in multi-player games. We show that the optimistic gradient (OG) algorithm with a constant step-size, which is no-regret, achieves a last-iterate rate of O(1/T‾‾√) with respect to the gap function in smooth monotone games. This result addresses a question of Mertikopoulos & Zhou (2018), who asked whether extra-gradient approaches (such as OG) can be applied to achieve improved guarantees in the multi-agent learning setting. The proof of our upper bound uses a new technique centered around an adaptive choice of potential function at each iteration. We also show that the O(1/T‾‾√) rate is tight for all p-SCLI algorithms, which includes OG as a special case. As a byproduct of our lower bound analysis we additionally present a proof of a conjecture of Arjevani et al. (2015) which is more direct than previous approaches.  more » « less
Award ID(s):
1741137
PAR ID:
10228237
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
34th Annual Conference on Neural Information Processing Systems (NeurIPS), NeurIPS 2020
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Motivated by applications in Game Theory, Optimization, and Generative Adversarial Networks, recent work of Daskalakis et al~\cite{DISZ17} and follow-up work of Liang and Stokes~\cite{LiangS18} have established that a variant of the widely used Gradient Descent/Ascent procedure, called "Optimistic Gradient Descent/Ascent (OGDA)", exhibits last-iterate convergence to saddle points in {\em unconstrained} convex-concave min-max optimization problems. We show that the same holds true in the more general problem of {\em constrained} min-max optimization under a variant of the no-regret Multiplicative-Weights-Update method called "Optimistic Multiplicative-Weights Update (OMWU)". This answers an open question of Syrgkanis et al~\cite{SALS15}. The proof of our result requires fundamentally different techniques from those that exist in no-regret learning literature and the aforementioned papers. We show that OMWU monotonically improves the Kullback-Leibler divergence of the current iterate to the (appropriately normalized) min-max solution until it enters a neighborhood of the solution. Inside that neighborhood we show that OMWU becomes a contracting map converging to the exact solution. We believe that our techniques will be useful in the analysis of the last iterate of other learning algorithms. 
    more » « less
  2. null (Ed.)
    Motivated by applications in Game Theory, Optimization, and Generative Adversarial Networks, recent work of Daskalakis et al \cite{DISZ17} and follow-up work of Liang and Stokes \cite{LiangS18} have established that a variant of the widely used Gradient Descent/Ascent procedure, called "Optimistic Gradient Descent/Ascent (OGDA)", exhibits last-iterate convergence to saddle points in {\em unconstrained} convex-concave min-max optimization problems. We show that the same holds true in the more general problem of {\em constrained} min-max optimization under a variant of the no-regret Multiplicative-Weights-Update method called "Optimistic Multiplicative-Weights Update (OMWU)". This answers an open question of Syrgkanis et al \cite{SALS15}. The proof of our result requires fundamentally different techniques from those that exist in no-regret learning literature and the aforementioned papers. We show that OMWU monotonically improves the Kullback-Leibler divergence of the current iterate to the (appropriately normalized) min-max solution until it enters a neighborhood of the solution. Inside that neighborhood we show that OMWU is locally (asymptotically) stable converging to the exact solution. We believe that our techniques will be useful in the analysis of the last iterate of other learning algorithms. 
    more » « less
  3. SGD with Momentum (SGDM) is a widely used family of algorithms for large-scale optimization of machine learning problems. Yet, when optimizing generic convex functions, no advantage is known for any SGDM algorithm over plain SGD. Moreover, even the most recent results require changes to the SGDM algorithms, like averaging of the iterates and a projection onto a bounded domain, which are rarely used in practice. In this paper, we focus on the convergence rate of the last iterate of SGDM. For the first time, we prove that for any constant momentum factor, there exists a Lipschitz and convex function for which the last iterate of SGDM suffers from a suboptimal convergence rate of $$\Omega(\frac{\ln T}{\sqrt{T}})$$ after $$T$$ iterations. Based on this fact, we study a class of (both adaptive and non-adaptive) Follow-The-Regularized-Leader-based SGDM algorithms with increasing momentum and shrinking updates. For these algorithms, we show that the last iterate has optimal convergence $$O(\frac{1}{\sqrt{T}})$$ for unconstrained convex stochastic optimization problems without projections onto bounded domains nor knowledge of $$T$$. Further, we show a variety of results for FTRL-based SGDM when used with adaptive stepsizes. Empirical results are shown as well. 
    more » « less
  4. SGD with Momentum (SGDM) is a widely used family of algorithms for large-scale optimization of machine learning problems. Yet, when optimizing generic convex functions, no advantage is known for any SGDM algorithm over plain SGD. Moreover, even the most recent results require changes to the SGDM algorithms, like averaging of the iterates and a projection onto a bounded domain, which are rarely used in practice. In this paper, we focus on the convergence rate of the last iterate of SGDM. For the first time, we prove that for any constant momentum factor, there exists a Lipschitz and convex function for which the last iterate of SGDM suffers from a suboptimal convergence rate of $$\Omega(\frac{\ln T}{\sqrt{T}})$$ after $$T$$ iterations. Based on this fact, we study a class of (both adaptive and non-adaptive) Follow-The-Regularized-Leader-based SGDM algorithms with \emph{increasing momentum} and \emph{shrinking updates}. For these algorithms, we show that the last iterate has optimal convergence $$O(\frac{1}{\sqrt{T}})$ for unconstrained convex stochastic optimization problems without projections onto bounded domains nor knowledge of $$T$$. Further, we show a variety of results for FTRL-based SGDM when used with adaptive stepsizes. Empirical results are shown as well. 
    more » « less
  5. We provide the first sub-linear space and sub-linear regret algorithm for online learning with expert advice (against an oblivious adversary), addressing an open question raised recently by Srinivas, Woodruff, Xu and Zhou (STOC 2022). We also demonstrate a separation between oblivious and (strong) adaptive adversaries by proving a linear memory lower bound of any sub-linear regret algorithm against an adaptive adversary. Our algorithm is based on a novel pool selection procedure that bypasses the traditional wisdom of leader selection for online learning, and a generic reduction that transforms any weakly sub-linear regret o(T) algorithm to T1-α regret algorithm, which may be of independent interest. Our lower bound utilizes the connection of no-regret learning and equilibrium computation in zero-sum games, leading to a proof of a strong lower bound against an adaptive adversary. 
    more » « less