skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Interactive Web-Based Visual Analysis on Network Traffic Data
Network traffic data analysis is important for securing our computing environment and data. However, analyzing network traffic data requires tremendous effort because of the complexity of continuously changing network traffic patterns. To assist the user in better understanding and analyzing the network traffic data, an interactive web-based visualization system is designed using multiple coordinated views, supporting a rich set of user interactions. For advancing the capability of analyzing network traffic data, feature extraction is considered along with uncertainty quantification to help the user make precise analyses. The system allows the user to perform a continuous visual analysis by requesting incrementally new subsets of data with updated visual representation. Case studies have been performed to determine the effectiveness of the system. The results from the case studies support that the system is well designed to understand network traffic data by identifying abnormal network traffic patterns.  more » « less
Award ID(s):
2107449 2107451
PAR ID:
10443287
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Information
Volume:
14
Issue:
1
ISSN:
2078-2489
Page Range / eLocation ID:
16
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract The proliferation of smart home Internet of things (IoT) devices presents unprecedented challenges for preserving privacy within the home. In this paper, we demonstrate that a passive network observer (e.g., an Internet service provider) can infer private in-home activities by analyzing Internet traffic from commercially available smart home devices even when the devices use end-to-end transport-layer encryption . We evaluate common approaches for defending against these types of traffic analysis attacks, including firewalls, virtual private networks, and independent link padding, and find that none sufficiently conceal user activities with reasonable data overhead. We develop a new defense, “stochastic traffic padding” (STP), that makes it difficult for a passive network adversary to reliably distinguish genuine user activities from generated traffic patterns designed to look like user interactions. Our analysis provides a theoretical bound on an adversary’s ability to accurately detect genuine user activities as a function of the amount of additional cover traffic generated by the defense technique. 
    more » « less
  2. Analyzing network traffic activities is imperative in network security to detect attack patterns. Due to the complex nature of network traffic event activities caused by continuously changing computing environments and software applications, identifying the patterns is one of the challenging research topics. This study focuses on analyzing the effectiveness of integrating Multi-Resolution Analysis (MRA) and visualization in identifying the attack patterns of network traffic activities. In detail, a Discrete Wavelet Transform (DWT) is utilized to extract features from network traffic data and investigate their capability of identifying attacks. For extracting features, various sliding windows and step sizes are tested. Then, visualizations are generated to help users conduct interactive visual analyses to identify abnormal network traffic events. To determine optimal solutions for generating visualizations, an extensive evaluation with multiple intrusion detection datasets has been performed. In addition, classification analysis with three different classification algorithms is managed to understand the effectiveness of using the MRA with visualization. From the study, we generated multiple visualizations associated with various window and step sizes to emphasize the effectiveness of the proposed approach in differentiating normal and attack events by forming distinctive clusters. We also found that utilizing MRA with visualization advances network intrusion detection by generating clearly separated visual clusters. 
    more » « less
  3. As precipitation analysis reveals critical statistical characteristics, temporal patterns, and spatial distributions of rainfall and snowfall events, it plays an important role in planning urban drainage systems, flood forecasting, hydrological modeling, and climate studies. It helps engineers design climate-resilient infrastructure capable of withstanding extreme weather events, which is becoming increasingly important as precipitation patterns change over time. With precipitation analysis, multiple valuable information can be determined, such as storm intensity, duration, and frequency. To enhance understanding of precipitation data and analysis results, researchers often use graphical representation methods to show the data in visual formats. Although existing precipitation analysis and basic visual representations are helpful, it is critical to have a comprehensive analysis and visualization system to detect significant patterns and anomalies in high-resolution temporal precipitation data more effectively. This study presents a visual analytics system enabling interactive analysis of hourly precipitation data across all U.S. states. Multiple coordinated visualizations are designed to support both single and multiple-station analysis. These visualizations allow users to examine temporal patterns, spatial distributions, and statistical characteristics of precipitation events directly within visualizations. Case studies demonstrate the usefulness of the designed system by evaluating various historical storm events. 
    more » « less
  4. Internet of Things (IoT) devices have been increasingly deployed in smart homes to automatically monitor and control their environments. Unfortunately, extensive recent research has shown that on-path external adversaries can infer and further fingerprint people’s sensitive private information by analyzing IoT network traffic traces. In addition, most recent approaches that aim to defend against these malicious IoT traffic analytics cannot adequately protect user privacy with reasonable traffic overhead. In particular, these approaches often did not consider practical traffic reshaping limitations, user daily routine permitting, and user privacy protection preference in their design. To address these issues, we design a new low-cost, open source user-centric defense system—PrivacyGuard—that enables people to regain the privacy leakage control of their IoT devices while still permitting sophisticated IoT data analytics that is necessary for smart home automation. In essence, our approach employs intelligent deep convolutional generative adversarial network assisted IoT device traffic signature learning, long short-term memory based artificial traffic signature injection, and partial traffic reshaping to obfuscate private information that can be observed in IoT device traffic traces. We evaluate PrivacyGuard using IoT network traffic traces of 31 IoT devices from five smart homes and buildings. We find that PrivacyGuard can effectively prevent a wide range of state-of-the-art adversarial machine learning and deep learning based user in-home activity inference and fingerprinting attacks and help users achieve the balance between their IoT data utility and privacy preserving. 
    more » « less
  5. Recent advances in high-resolution connectomics provide researchers access to accurate reconstructions of vast neuronal circuits and brain networks for the first time. Neuroscientists anticipate analyzing these networks to gain a better understanding of information processing in the brain. In particular, scientists are interested in identifying specific network motifs, i.e., repeating subgraphs of the larger brain network that are believed to be neuronal building blocks. To analyze these motifs, it is crucial to review instances of a motif in the brain network and then map the graph structure to the detailed 3D reconstructions of the involved neurons and synapses. We present Vimo, an interactive visual approach to analyze neuronal motifs and motif chains in large brain networks. Experts can sketch network motifs intuitively in a visual interface and specify structural properties of the involved neurons and synapses to query large connectomics datasets. Motif instances (MIs) can be explored in high-resolution 3D renderings of the involved neurons and synapses. To reduce visual clutter and simplify the analysis of MIs, we designed a continuous focus&context metaphor inspired by continuous visual abstractions [MAAB∗18] that allows the user to transition from the highly-detailed rendering of the anatomical structure to views that emphasize the underlying motif structure and synaptic connectivity. Furthermore, Vimo supports the identification of motif chains where a motif is used repeatedly to form a longer synaptic chain. We evaluate Vimo in a user study with seven domain experts and an in-depth case study on motifs in the central complex (CX) of the fruit fly brain. 
    more » « less