skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quantifying Spatial Drought Propagation Potential in North America Using Complex Network Theory
Abstract Droughts have a dominant three‐dimensional (3‐D) spatiotemporal structure typically spanning hundreds of kilometers and often lasting for months to years. Here, we introduced a novel framework to explore the 3‐D structure of the evolution of droughts based on network theory concepts. The proposed framework is applied to identify critical source regions responsible for large‐scale drought onsets during 1901–2014 for the North American continent using the Standardized Precipitation Evaporation Index (SPEI). We built a spatial network connecting the drought onset timings for the North American continent. Using a spatially weighted network partitioning algorithm, the whole continent is then classified into regional spatial drought networks (RSN), where droughts are more likely to propagate within these regional systems. Finally, a customized network metric was applied to identify locations (source regions) where the drought onsets further propagate to other areas within the regional spatial network. Our results indicated that the West coast, Texas coastal region, and Southeastern Arkansas as major source regions through which atmospheric drought propagates to Western, South Central, and Eastern North America. The formation of drought source regions are due to presence of high pressure ridges and anomalous wind patterns. Furthermore, our results indicate that the drought propagation from these source regions may be due to inadequate moisture transport. The proposed framework can help to develop an early warning detection system for droughts and other spatially extensive extreme events such as heatwaves and floods.  more » « less
Award ID(s):
1653841
PAR ID:
10443409
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Volume:
58
Issue:
3
ISSN:
0043-1397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Quantifying the spatial and interconnected structure of regional to continental scale droughts is one of the unsolved global hydrology problems, which is important for understanding the looming risk of mega-scale droughts and the resulting water and food scarcity and their cascading impact on the worldwide economy. Using a Complex Network analysis, this study explores the topological characteristics of global drought events based on the self-calibrated Palmer Drought Severity Index. Event Synchronization is used to measure the strength of association between the onset of droughts at different spatial locations within the time lag of 1-3 months. The network coefficients derived from the synchronization network indicate a highly heterogeneous connectivity structure underlying global drought events. Drought hotspot regions such as Southern Europe, Northeast Brazil, Australia, and Northwest USA behave as drought hubs that synchronize regionally and with other hubs at inter-continental or even inter-hemispheric scale. This observed affinity among drought hubs is equivalent to the ‘rich-club phenomenon’ in Network Theory, where ‘rich’ nodes (here, drought hubs) are tightly interconnected to form a club, implicating the possibility of simultaneous large-scale droughts over multiple continents. 
    more » « less
  2. Flash droughts develop rapidly (∼1 month timescale) and produce significant ecological, agricultural, and socioeconomical impacts. Recent advances in our understanding of flash droughts have resulted in methods to identify and quantify flash drought events. However, few studies have been done to isolate the individual rapid intensification and drought components of flash drought, which could further determine their causes, evolution, and predictability. This study utilized the standardized evaporative stress ratio (SESR) to quantify individual components of flash drought from 1979 – 2019, using evapotranspiration (ET) and potential evapotranspiration (PET) data from the North American Regional Reanalysis (NARR) dataset. The temporal change in SESR was utilized to quantify the rapid intensification component of flash drought. The drought component was also determined using SESR and compared to the United States Drought Monitor. The results showed that SESR was able to represent the spatial coverage of drought well for regions east of the Rocky Mountains. Furthermore, the rapid intensification component agreed well with previous flash drought studies, with the overall climatology of rapid intensification events showing similar hotspots to the flash drought climatology east of the Rocky Mountains. The rapid intensification climatology suggested areas west of the Rocky Mountains experience rapid drying more often than east of the Rocky Mountains. 
    more » « less
  3. South American (SA) societies are highly vulnerable to droughts and pluvials, but lack of long-term climate observations severely limits our understanding of the global processes driving climatic variability in the region. The number and quality of SA climate-sensitive tree ring chronologies have significantly increased in recent decades, now providing a robust network of 286 records for characterizing hydroclimate variability since 1400 CE. We combine this network with a self-calibrated Palmer Drought Severity Index (scPDSI) dataset to derive the South American Drought Atlas (SADA) over the continent south of 12°S. The gridded annual reconstruction of austral summer scPDSI is the most spatially complete estimate of SA hydroclimate to date, and well matches past historical dry/wet events. Relating the SADA to the Australia–New Zealand Drought Atlas, sea surface temperatures and atmospheric pressure fields, we determine that the El Niño–Southern Oscillation (ENSO) and the Southern Annular Mode (SAM) are strongly associated with spatially extended droughts and pluvials over the SADA domain during the past several centuries. SADA also exhibits more extended severe droughts and extreme pluvials since the mid-20th century. Extensive droughts are consistent with the observed 20th-century trend toward positive SAM anomalies concomitant with the weakening of midlatitude Westerlies, while low-level moisture transport intensified by global warming has favored extreme rainfall across the subtropics. The SADA thus provides a long-term context for observed hydroclimatic changes and for 21st-century Intergovernmental Panel on Climate Change (IPCC) projections that suggest SA will experience more frequent/severe droughts and rainfall events as a consequence of increasing greenhouse gas emissions. 
    more » « less
  4. Abstract Climate change has contributed to recent declines in mountain snowpack and earlier runoff, which in turn have intensified hydrological droughts in western North America. Climate model projections suggest that continued and severe snowpack reductions are expected over the 21st century, with profound consequences for ecosystems and human welfare. Yet the current understanding of trends and variability in mountain snowpack is limited by the relatively short and strongly temperature forced observational record. Motivated by the urgent need to better understand snowpack dynamics in a long-term, spatially coherent framework, here we examine snow-growth relationships in western North American tree-ring chronologies. We present an extensive network of snow-sensitive proxy data to support high space/time resolution paleosnow reconstruction, quantify and interpret the type and spatial density of snow related signals in tree-ring records, and examine the potential for regional bias in the tree-ring based reconstruction of different snow drought types (dry versus warm). Our results indicate three distinct snow-growth relationships in tree-ring chronologies: moisture-limited snow proxies that include a spring temperature signal, moisture-limited snow proxies lacking a spring temperature signal, and energy-limited snow proxies. Each proxy type is based on distinct physiological tree-growth mechanisms related to topographic and climatic site conditions, and provides unique information on mountain snowpack dynamics that can be capitalized upon within a statistical reconstruction framework. This work provides a platform and foundational background required for the accelerated production of high-quality annually resolved snowpack reconstructions from regional to high ( < 12 km) spatial scales in western North America and, by extension, will support an improved understanding of the vulnerability of snowmelt-derived water resources to natural variability and future climate warming. 
    more » « less
  5. Cool- and warm-season precipitation totals have been reconstructed on a gridded basis for North America using 439 tree-ring chronologies correlated with December–April totals and 547 different chronologies correlated with May–July totals. These discrete seasonal chronologies are not significantly correlated with the alternate season; the December–April reconstructions are skillful over most of the southern and western United States and north-central Mexico, and the May–July estimates have skill over most of the United States, southwestern Canada, and northeastern Mexico. Both the strong continent-wide El Niño–Southern Oscillation (ENSO) signal embedded in the cool-season reconstructions and the Arctic Oscillation signal registered by the warm-season estimates faithfully reproduce the sign, intensity, and spatial patterns of these ocean–atmospheric influences on North American precipitation as recorded with instrumental data. The reconstructions are included in the North American Seasonal Precipitation Atlas (NASPA) and provide insight into decadal droughts and pluvials. They indicate that the sixteenth-century megadrought, the most severe and sustained North American drought of the past 500 years, was the combined result of three distinct seasonal droughts, each bearing unique spatial patterns potentially associated with seasonal forcing from ENSO, the Arctic Oscillation, and the Atlantic multidecadal oscillation. Significant 200–500-yr-long trends toward increased precipitation have been detected in the cool- and warm-season reconstructions for eastern North America. These seasonal precipitation changes appear to be part of the positive moisture trend measured in other paleoclimate proxies for the eastern area that began as a result of natural forcing before the industrial revolution and may have recently been enhanced by anthropogenic climate change. 
    more » « less