skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.

Title: Quantifying Spatial Drought Propagation Potential in North America Using Complex Network Theory

Droughts have a dominant three‐dimensional (3‐D) spatiotemporal structure typically spanning hundreds of kilometers and often lasting for months to years. Here, we introduced a novel framework to explore the 3‐D structure of the evolution of droughts based on network theory concepts. The proposed framework is applied to identify critical source regions responsible for large‐scale drought onsets during 1901–2014 for the North American continent using the Standardized Precipitation Evaporation Index (SPEI). We built a spatial network connecting the drought onset timings for the North American continent. Using a spatially weighted network partitioning algorithm, the whole continent is then classified into regional spatial drought networks (RSN), where droughts are more likely to propagate within these regional systems. Finally, a customized network metric was applied to identify locations (source regions) where the drought onsets further propagate to other areas within the regional spatial network. Our results indicated that the West coast, Texas coastal region, and Southeastern Arkansas as major source regions through which atmospheric drought propagates to Western, South Central, and Eastern North America. The formation of drought source regions are due to presence of high pressure ridges and anomalous wind patterns. Furthermore, our results indicate that the drought propagation from these source regions may be due to inadequate moisture transport. The proposed framework can help to develop an early warning detection system for droughts and other spatially extensive extreme events such as heatwaves and floods.

more » « less
Award ID(s):
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The National Space Weather Action Plan, NERC Reliability Standard TPL-007-1,2 associated FERC Orders 779, 830 and subsequent actions, emerging standard TPL-007-3, as well as Executive Order 13744 have prepared the regulatory framework and roadmap for assessing and mitigating the impact on critical infrastructure from space weather. These actions have resulted in an emerging set of benchmarks against which the statistical probability of damage to critical components such as power transmission system high-voltage transformers can be assessed; for the first time the impacts on the intensity of geomagnetically induced currents (GICs) due to the spatial variability of the geomagnetic field and of the Earth’s electrical conductivity structure can be examined systematically. While at present not a strict requirement of the existing reliability standards, there is growing evidence that the strongly three-dimensional nature of the electrical conductivity structure of the North American crust and mantle (heretofore ‘ground conductivity’) has a first-order impact on GIC intensity, with considerable local and regional variability. The strongly location dependent ground electric field intensification and attenuation due to 3-D ground conductivity variations has an equivalent impact on assessment of risk to critical infrastructure due to HEMP (E3 phase) sources of geomagnetic disturbances (GMDs) as it does for natural GMDs. From 2006-2018, Oregon State University (OSU) under NSF EarthScope Program support, installed and acquired ground electric and magnetic field time series (magnetotelluric, or MT) data on a grid of station locations spaced ~70-km apart, at 1161 long-period MT stations covering nearly ⅔ of CONUS. The US Geological Survey completed 47 additional MT stations using functionally identical instrumentation, and the two data sets were merged and made available in the public domain. OSU and its project collaborators have also collected hundreds of wider frequency bandwidth, more densely-spaced MT station data under other project support, and these have been or will be released for public access in the near future. NSF funding was not available to make possible collection of EarthScope MT data 1/3 of CONUS in the southern tier of states, in a band from central California in the west to Alabama in the east and extending along the Gulf Coast and Deep South. OSU, with NASA support just received, plans to complete MT station installation in the remainder of California this year, and with additional support both anticipated and proposed, we hope to complete the MT array in the remainder of CONUS. For this first time this will provide national-scale 3-D electrical conductivity/MT impedance data throughout the US portion of the contiguous North American power grid. Complementary planning and proposal efforts are underway in Canada, including collaborations between OSU, Athabasca University and other Canadian academic and industry groups. In the present work, we apply algorithms we have developed to make use of real-time streams of US Geological Survey, Natural Resources Canada (and other) magnetic observatory data, and the EarthScope and other MT data sets to provide quasi-real time predictions of the geomagnetically induced voltages at high-voltage transmission system transformers/power buses. This goes beyond the statistical benchmarking process currently encapsulated in NERC reliability standards. We seek initially to provide real-time information to power utility control room operators, in the form of a heat map showing which assets are likely experiencing stress due to induced currents. These assessments will be ground-truthed against transmission system sensor data (PMUs, GIC monitors, voltage waveforms and harmonics where available), and by applying machine learning methods we hope to extend this approach to transmission systems that have sparse or non-existent GIC monitoring sensor infrastructure. Ultimately by incorporating predictive models of the geomagnetic field using satellite data as inputs rather than real-time ground magnetic field measurements, a near-term probabilistic assessment of risk to transformers may be possible, ideally providing at least a 15-minute forecast to utility operators. There has been a concerted effort by NOAA to develop a real-time geomagnetically induced ground electric field data product that makes use of our EarthScope MT data, which includes the strong impacts on GICs due to 3-D ground conductivity structure. Both OSU and the USGS have developed methods to determine the GIC-related voltages at substations by integrating the ground electric fields along power transmission line paths. Under National Science Foundation support, the present team of investigators is taking the next step, of applying the GIC-related voltages as inputs to quasi-real time power flow models of the power transmission grid in order to obtain realistic and verifiable predictions of the intensity of induced GICs, the reactive power loss due to GICs, and of GIC effects on the current and voltage waveforms, such as the harmonic distortion. As we work toward integration of predicted induced substation voltages with power flow models, we’ve modified the RTS-GMLC (Reliability Test System Grid Modernization Lab Consortium) test case ( by moving the geographic location of the case to central Oregon. With the assistance of LANL we have the complete AC and DC network of the RTS-GMLC case, and we are working to integrate the complete case information into Julia (using the PowerModels and PowerModelsGMD packages of LANL), or into PowerWorld. Along a parallel track, we have performed GIC voltage calculations using our geophysical algorithm for a realistic GMD event (Halloween event) for the test case, resulting in GIC transmission line voltages that can be added into our power system model. We’ll discuss our progress in integrating the geophysical estimates of transformer voltages and our DC model using LANL's Julia and PowerModelsGMD package, for power flow simulations on the test case, and to determine the GIC flows and possible impacts on the power waveforms in the system elements. 
    more » « less
  2. Abstract

    Climate change has contributed to recent declines in mountain snowpack and earlier runoff, which in turn have intensified hydrological droughts in western North America. Climate model projections suggest that continued and severe snowpack reductions are expected over the 21st century, with profound consequences for ecosystems and human welfare. Yet the current understanding of trends and variability in mountain snowpack is limited by the relatively short and strongly temperature forced observational record. Motivated by the urgent need to better understand snowpack dynamics in a long-term, spatially coherent framework, here we examine snow-growth relationships in western North American tree-ring chronologies. We present an extensive network of snow-sensitive proxy data to support high space/time resolution paleosnow reconstruction, quantify and interpret the type and spatial density of snow related signals in tree-ring records, and examine the potential for regional bias in the tree-ring based reconstruction of different snow drought types (dry versus warm). Our results indicate three distinct snow-growth relationships in tree-ring chronologies: moisture-limited snow proxies that include a spring temperature signal, moisture-limited snow proxies lacking a spring temperature signal, and energy-limited snow proxies. Each proxy type is based on distinct physiological tree-growth mechanisms related to topographic and climatic site conditions, and provides unique information on mountain snowpack dynamics that can be capitalized upon within a statistical reconstruction framework. This work provides a platform and foundational background required for the accelerated production of high-quality annually resolved snowpack reconstructions from regional to high (<12 km) spatial scales in western North America and, by extension, will support an improved understanding of the vulnerability of snowmelt-derived water resources to natural variability and future climate warming.

    more » « less
  3. Abstract

    Quantifying the spatial and interconnected structure of regional to continental scale droughts is one of the unsolved global hydrology problems, which is important for understanding the looming risk of mega-scale droughts and the resulting water and food scarcity and their cascading impact on the worldwide economy. Using a Complex Network analysis, this study explores the topological characteristics of global drought events based on the self-calibrated Palmer Drought Severity Index. Event Synchronization is used to measure the strength of association between the onset of droughts at different spatial locations within the time lag of 1-3 months. The network coefficients derived from the synchronization network indicate a highly heterogeneous connectivity structure underlying global drought events. Drought hotspot regions such as Southern Europe, Northeast Brazil, Australia, and Northwest USA behave as drought hubs that synchronize regionally and with other hubs at inter-continental or even inter-hemispheric scale. This observed affinity among drought hubs is equivalent to the ‘rich-club phenomenon’ in Network Theory, where ‘rich’ nodes (here, drought hubs) are tightly interconnected to form a club, implicating the possibility of simultaneous large-scale droughts over multiple continents.

    more » « less
  4. Abstract Aim

    Current distributions of widespread North American (NA) species have been shaped by Pleistocene glacial cycles, latitudinal temperature gradients, sharp longitudinal habitat transitions and the vicariant effects of major mountain and river systems that subdivide the continent. Within these transcontinental species, genetic diversity patterns might not conform to established biogeographic breaks compared to more spatially restricted taxa due to intrinsic differences or spatiotemporal differences. In this study, we highlight the effects of these extrinsic variables on genetic structuring by investigating the phylogeographic history of a widespread generalist squamate found throughout NA.


    North America.


    Common gartersnake,Thamnophis sirtalis.


    We evaluate the effects of major river basins and the forest‐grassland transition into the Interior Plains on genetic structure patterns using phylogenetic, spatially informed population structure and demographic analyses of single nucleotide polymorphism data and address range expansion history with ecological niche modelling using locality and historic climate data.


    We identify four phylogeographic lineages with varying degrees of connectivity between them. We find discordant population structure patterns between sex‐linked and autosomal loci with respect to the relationship between the central NA lineage relative to coastal lineages. We find support for southeast Pleistocene refugia where recent secondary contact occurred during the Last Glacial Maximum and evidence for both northern and southern refugia in western NA.

    Main Conclusion

    Our results provide strong evidence for a Pliocene origin forT. sirtalisin central‐southeastern NA preceding its rapid expansion across the continent prior to middle Pleistocene climate‐mediated lineage formation. We implicate major riverine networks within the Mississippi watershed in likely repeated westward expansion events across the Interior Plains. Finally, we corroborate prior conclusions that phenotypic differences between subspecies do not reflect shared evolutionary history and note that the degree of separation between inferred lineages warrants further investigation before any taxonomic revisions are proposed.

    more » « less
  5. Flash droughts develop rapidly (∼1 month timescale) and produce significant ecological, agricultural, and socioeconomical impacts. Recent advances in our understanding of flash droughts have resulted in methods to identify and quantify flash drought events. However, few studies have been done to isolate the individual rapid intensification and drought components of flash drought, which could further determine their causes, evolution, and predictability. This study utilized the standardized evaporative stress ratio (SESR) to quantify individual components of flash drought from 1979 – 2019, using evapotranspiration (ET) and potential evapotranspiration (PET) data from the North American Regional Reanalysis (NARR) dataset. The temporal change in SESR was utilized to quantify the rapid intensification component of flash drought. The drought component was also determined using SESR and compared to the United States Drought Monitor. The results showed that SESR was able to represent the spatial coverage of drought well for regions east of the Rocky Mountains. Furthermore, the rapid intensification component agreed well with previous flash drought studies, with the overall climatology of rapid intensification events showing similar hotspots to the flash drought climatology east of the Rocky Mountains. The rapid intensification climatology suggested areas west of the Rocky Mountains experience rapid drying more often than east of the Rocky Mountains. 
    more » « less