skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: "Asymmetric Information and Sovereign Debt: Theory Meets Mexican Data."
Using bid-level data from discriminatory auctions for Mexican government bonds, we demonstrate that asymmetric information about default risk is a key friction in sovereign bond markets. We document that large bidders achieve higher bid-acceptance rates than other bidders despite paying no more for executed bids.We then propose a new model of primary markets in which investors may differ in wealth, risk aversion, market power, and information. Only asymmetric information can qualitatively account for our empirical finding, and asymmetric information about rare disasters can quantitatively match bidding and yield moments. Counterfactuals reveal substantial effects of asymmetric information on yields.  more » « less
Award ID(s):
1851707
PAR ID:
10443578
Author(s) / Creator(s):
; ;
Editor(s):
Greg Kaplan
Date Published:
Journal Name:
Journal of political economy
Volume:
130
Issue:
8
ISSN:
1537-534X
Page Range / eLocation ID:
2055-2109
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    A profit‐maximizing seller has a single unit of a good to sell. The bidders have a pure common value that is drawn from a distribution that is commonly known. The seller does not know the bidders' beliefs about the value and thinks that beliefs are designed adversarially by Nature to minimize profit. We construct a strong maxmin solution to this joint mechanism design and information design problem, consisting of a mechanism, an information structure, and an equilibrium, such that neither the seller nor Nature can move profit in their respective preferred directions, even if the deviator can select the new equilibrium. The mechanism and information structure solve a family of maxmin mechanism design and minmax information design problems, regardless of how an equilibrium is selected. The maxmin mechanism takes the form of a proportional auction : each bidder submits a one‐dimensional bid, the aggregate allocation and aggregate payment depend on the aggregate bid, and individual allocations and payments are proportional to bids. We report a number of additional properties of the maxmin mechanisms, including what happens as the number of bidders grows large and robustness with respect to the prior over the value. 
    more » « less
  2. Bringmann, Karl; Grohe, Martin; Puppis, Gabriele; Svensson, Ola (Ed.)
    We study information design in click-through auctions, in which the bidders/advertisers bid for winning an opportunity to show their ads but only pay for realized clicks. The payment may or may not happen, and its probability is called the click-through rate (CTR). This auction format is widely used in the industry of online advertising. Bidders have private values, whereas the seller has private information about each bidder’s CTRs. We are interested in the seller’s problem of partially revealing CTR information to maximize revenue. Information design in click-through auctions turns out to be intriguingly different from almost all previous studies in this space since any revealed information about CTRs will never affect bidders' bidding behaviors - they will always bid their true value per click - but only affect the auction’s allocation and payment rule. In some sense, this makes information design effectively a constrained mechanism design problem. Our first result is an FPTAS to compute an approximately optimal mechanism under a constant number of bidders. The design of this algorithm leverages Bayesian bidder values which help to "smooth" the seller’s revenue function and lead to better tractability. The design of this FPTAS is complex and primarily algorithmic. Our second main result pursues the design of "simple" mechanisms that are approximately optimal yet more practical. We primarily focus on the two-bidder situation, which is already notoriously challenging as demonstrated in recent works. When bidders' CTR distribution is symmetric, we develop a simple prior-free signaling scheme, whose construction relies on a parameter termed optimal signal ratio. The constructed scheme provably obtains a good approximation as long as the maximum and minimum of bidders' value density functions do not differ much. 
    more » « less
  3. Johnson, William (Ed.)
    In this paper we extend our analysis to incorporate the sample back to December 1995, the date at which Mexico began selling Cetes using discriminatory auctions. We analyze the data using a model of multiunit discriminatory auctions with risk-averse bidders and asymmetric information about the bond’s common value. We find that the insurance benefit of discriminatory auctions is substantial. 
    more » « less
  4. We study the second-price auction in which bidders have asymmetric information regarding the item’s value. Each bidder’s value for the item depends on a private component and a public component. While each bidder observes their own private component, they hold different and asymmetric information about the public component. We characterize the equilibrium of this auction game and study how the asymmetric bidder information affects their equilibrium bidding strategies. We also discover multiple surprisingly counter-intuitive equilibrium phenomena. For instance, a bidder may be better off if she is less informed regarding the public component. Conversely, a bidder may sometimes be worse off if she obtains more accurate estimation about the auctioned item. Our results suggest that efforts devoted by bidders to improve their value estimations, as widely seen in today’s online advertising auctions, may not always be to their benefit. 
    more » « less
  5. Cremers, Cas; Kirda, Engin (Ed.)
    We introduce the first practical protocols for fully decentralized sealed-bid auctions using timed commitments. Timed commitments ensure that the auction is finalized fairly even if all participants drop out after posting bids or if bidders collude to try to learn the bidder’s bid value. Our protocols rely on a novel non-malleable timed commitment scheme which efficiently supports range proofs to establish that bidders have sufficient funds to cover a hidden bid value. This allows us to penalize users who abandon bids for exactly the bid value, while supporting simultaneous bidding in multiple auctions with a shared collateral pool. Our protocols are concretely efficient and we have implemented them in an Ethereum- compatible smart contract which automatically enforces payment and delivery of an auctioned digital asset. 
    more » « less