skip to main content


This content will become publicly available on January 1, 2025

Title: Bayesian Calibrated Click-Through Auctions
We study information design in click-through auctions, in which the bidders/advertisers bid for winning an opportunity to show their ads but only pay for realized clicks. The payment may or may not happen, and its probability is called the click-through rate (CTR). This auction format is widely used in the industry of online advertising. Bidders have private values, whereas the seller has private information about each bidder’s CTRs. We are interested in the seller’s problem of partially revealing CTR information to maximize revenue. Information design in click-through auctions turns out to be intriguingly different from almost all previous studies in this space since any revealed information about CTRs will never affect bidders' bidding behaviors - they will always bid their true value per click - but only affect the auction’s allocation and payment rule. In some sense, this makes information design effectively a constrained mechanism design problem. Our first result is an FPTAS to compute an approximately optimal mechanism under a constant number of bidders. The design of this algorithm leverages Bayesian bidder values which help to "smooth" the seller’s revenue function and lead to better tractability. The design of this FPTAS is complex and primarily algorithmic. Our second main result pursues the design of "simple" mechanisms that are approximately optimal yet more practical. We primarily focus on the two-bidder situation, which is already notoriously challenging as demonstrated in recent works. When bidders' CTR distribution is symmetric, we develop a simple prior-free signaling scheme, whose construction relies on a parameter termed optimal signal ratio. The constructed scheme provably obtains a good approximation as long as the maximum and minimum of bidders' value density functions do not differ much.  more » « less
Award ID(s):
2303372
PAR ID:
10528617
Author(s) / Creator(s):
; ; ;
Editor(s):
Bringmann, Karl; Grohe, Martin; Puppis, Gabriele; Svensson, Ola
Publisher / Repository:
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
Date Published:
Volume:
297
ISSN:
1868-8969
ISBN:
978-3-95977-322-5
Page Range / eLocation ID:
297-297
Subject(s) / Keyword(s):
information design ad auctions online advertising mechanism design Theory of computation → Algorithmic game theory and mechanism design
Format(s):
Medium: X Size: 18 pages; 2129164 bytes Other: application/pdf
Size(s):
18 pages 2129164 bytes
Right(s):
Creative Commons Attribution 4.0 International license; info:eu-repo/semantics/openAccess
Sponsoring Org:
National Science Foundation
More Like this
  1. Bonneau, Joseph ; Weinberg, S Matthew (Ed.)
    In a typical decentralized autonomous organization (DAO), people organize themselves into a group that is programmatically managed. DAOs can act as bidders in auctions (with ConstitutionDAO being one notable example), with a DAO’s bid typically treated by the auctioneer as if it had been submitted by an individual, without regard to any details of the internal DAO dynamics. The goal of this paper is to study auctions in which the bidders are DAOs. More precisely, we consider the design of two-level auctions in which the "participants" are groups of bidders rather than individuals. Bidders form DAOs to pool resources, but must then also negotiate the terms by which the DAO’s winnings are shared. We model the outcome of a DAO’s negotiations through an aggregation function (which aggregates DAO members' bids into a single group bid) and a budget-balanced cost-sharing mechanism (that determines DAO members' access to the DAO’s allocation and distributes the aggregate payment demanded from the DAO to its members). DAOs' bids are processed by a direct-revelation mechanism that has no knowledge of the DAO structure (and thus treats each DAO as an individual). Within this framework, we pursue two-level mechanisms that are incentive-compatible (with truthful bidding a dominant strategy for each member of each DAO) and approximately welfare-optimal. We prove that, even in the case of a single-item auction, the DAO dynamics hidden from the outer mechanism preclude incentive-compatible welfare maximization: No matter what the outer mechanism and the cost-sharing mechanisms used by DAOs, the welfare of the resulting two-level mechanism can be a ≈ ln n factor less than the optimal welfare (in the worst case over DAOs and valuation profiles). We complement this lower bound with a natural two-level mechanism that achieves a matching approximate welfare guarantee. This upper bound also extends to multi-item auctions in which individuals have additive valuations. Finally, we show that our positive results cannot be extended much further: Even in multi-item settings in which bidders have unit-demand valuations, truthful two-level mechanisms form a highly restricted class and as a consequence cannot guarantee any non-trivial approximation of the maximum social welfare. 
    more » « less
  2. Most results in revenue-maximizing mechanism design hinge on “getting the price right”—selling goods to bidders at prices low enough to encourage a sale but high enough to garner nontrivial revenue. This approach is difficult to implement when the seller has little or no a priori information about bidder valuations or when the setting is sufficiently complex, such as matching markets with heterogeneous goods. In this paper, we apply a robust approach to designing auctions for revenue. Instead of relying on prior knowledge regarding bidder valuations, we “let the market do the work” and let prices emerge from competition for scarce goods. We analyze the revenue guarantees of one of the simplest imaginable implementations of this idea: first, we enhance competition in the market by increasing demand (or alternatively, by limiting supply), and second, we run a standard second price (Vickrey) auction. In their renowned work from 1996 , Bulow and Klemperer [Bulow J, Klemperer P (1996) Auctions vs. negotiations. Amer. Econom. Rev. 86(1):180–194.] apply this method to markets with single goods. As our main result, we give the first application beyond single-parameter settings, proving that, simultaneously for many valuation distributions, this method achieves expected revenue at least as good as the optimal revenue in the original market. Our robust and simple approach provides a handle on the elusive optimal revenue in multiitem matching markets and shows when the use of welfare-maximizing Vickrey auctions is justified, even if revenue is a priority. By establishing quantitative tradeoffs, our work provides guidelines for a seller in choosing among two different revenue-extracting strategies: sophisticated pricing based on market research or advertising to draw additional bidders. 
    more » « less
  3. Cremers, Cas ; Kirda, Engin (Ed.)
    We introduce the first practical protocols for fully decentralized sealed-bid auctions using timed commitments. Timed commitments ensure that the auction is finalized fairly even if all participants drop out after posting bids or if bidders collude to try to learn the bidder’s bid value. Our protocols rely on a novel non-malleable timed commitment scheme which efficiently supports range proofs to establish that bidders have sufficient funds to cover a hidden bid value. This allows us to penalize users who abandon bids for exactly the bid value, while supporting simultaneous bidding in multiple auctions with a shared collateral pool. Our protocols are concretely efficient and we have implemented them in an Ethereum- compatible smart contract which automatically enforces payment and delivery of an auctioned digital asset. 
    more » « less
  4. null (Ed.)
    We characterize revenue maximizing mechanisms in a common value environment where the value of the object is equal to the highest of the bidders' independent signals. If the revenue maximizing solution is to sell the object with probability 1, then an optimal mechanism is simply a posted price, namely, the highest price such that every type of every bidder is willing to buy the object. If the object is optimally sold with probability less than 1, then optimal mechanisms skew the allocation toward bidders with lower signals. The resulting allocation induces a “winner's blessing,” whereby the expected value conditional on winning is higher than the unconditional expectation. By contrast, standard auctions that allocate to the bidder with the highest signal (e.g., the first‐price, second‐price, or English auctions) deliver lower revenue because of the winner's curse generated by the allocation. Our qualitative results extend to more general common value environments with a strong winner's curse. 
    more » « less
  5. We study the second-price auction in which bidders have asymmetric information regarding the item’s value. Each bidder’s value for the item depends on a private component and a public component. While each bidder observes their own private component, they hold different and asymmetric information about the public component. We characterize the equilibrium of this auction game and study how the asymmetric bidder information affects their equilibrium bidding strategies. We also discover multiple surprisingly counter-intuitive equilibrium phenomena. For instance, a bidder may be better off if she is less informed regarding the public component. Conversely, a bidder may sometimes be worse off if she obtains more accurate estimation about the auctioned item. Our results suggest that efforts devoted by bidders to improve their value estimations, as widely seen in today’s online advertising auctions, may not always be to their benefit. 
    more » « less