Ketone functionalization is a cornerstone of organic synthesis. Herein, we describe the development of an intermolecular C−H alkenylation of enamides with the feedstock chemical vinyl acetate to access diverse functionalized ketones. Enamides derived from various cyclic and acyclic ketones reacted efficiently, and a number of sensitive functional groups were tolerated. In this iridium‐catalyzed transformation, two structurally and electronically similar alkenes—enamide and vinyl acetate—underwent selective cross‐coupling through C−H activation. No reaction partner was used in large excess. The reaction is also pH‐ and redox‐neutral with HOAc as the only stoichiometric by‐product. Detailed experimental and computational studies revealed a reaction mechanism involving 1,2‐Ir‐C migratory insertion followed by
- Award ID(s):
- 1956387
- NSF-PAR ID:
- 10443780
- Date Published:
- Journal Name:
- Angewandte Chemie International Edition
- Volume:
- 62
- Issue:
- 3
- ISSN:
- 1433-7851
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract syn ‐β‐acetoxy elimination, which is different from that of previous vinyl acetate mediated C−H activation reactions. Finally, the alkenylation product can serve as a versatile intermediate to deliver a variety of structurally modified ketones. -
Abstract Ketone functionalization is a cornerstone of organic synthesis. Herein, we describe the development of an intermolecular C−H alkenylation of enamides with the feedstock chemical vinyl acetate to access diverse functionalized ketones. Enamides derived from various cyclic and acyclic ketones reacted efficiently, and a number of sensitive functional groups were tolerated. In this iridium‐catalyzed transformation, two structurally and electronically similar alkenes—enamide and vinyl acetate—underwent selective cross‐coupling through C−H activation. No reaction partner was used in large excess. The reaction is also pH‐ and redox‐neutral with HOAc as the only stoichiometric by‐product. Detailed experimental and computational studies revealed a reaction mechanism involving 1,2‐Ir‐C migratory insertion followed by
syn ‐β‐acetoxy elimination, which is different from that of previous vinyl acetate mediated C−H activation reactions. Finally, the alkenylation product can serve as a versatile intermediate to deliver a variety of structurally modified ketones. -
Abstract Synthesis of the C−C bonds of ketones relies upon one high‐availability reagent (carboxylic acids) and one low‐availability reagent (organometallic reagents or alkyl iodides). We demonstrate here a ketone synthesis that couples two different carboxylic acid esters,
N ‐hydroxyphthalimide esters andS ‐2‐pyridyl thioesters, to form aryl alkyl and dialkyl ketones in high yields. The keys to this approach are the use of a nickel catalyst with an electron‐poor bipyridine or terpyridine ligand, a THF/DMA mixed solvent system, and ZnCl2to enhance the reactivity of the NHP ester. The resulting reaction can be used to form ketones that have previously been difficult to access, such as hindered tertiary/tertiary ketones with strained rings and ketones with α‐heteroatoms. The conditions can be employed in the coupling of complex fragments, including a 20‐mer peptide fragment analog of Exendin(9–39) on solid support. -
Abstract Synthesis of the C−C bonds of ketones relies upon one high‐availability reagent (carboxylic acids) and one low‐availability reagent (organometallic reagents or alkyl iodides). We demonstrate here a ketone synthesis that couples two different carboxylic acid esters,
N ‐hydroxyphthalimide esters andS ‐2‐pyridyl thioesters, to form aryl alkyl and dialkyl ketones in high yields. The keys to this approach are the use of a nickel catalyst with an electron‐poor bipyridine or terpyridine ligand, a THF/DMA mixed solvent system, and ZnCl2to enhance the reactivity of the NHP ester. The resulting reaction can be used to form ketones that have previously been difficult to access, such as hindered tertiary/tertiary ketones with strained rings and ketones with α‐heteroatoms. The conditions can be employed in the coupling of complex fragments, including a 20‐mer peptide fragment analog of Exendin(9–39) on solid support. -
Chemoselectivity is one of the most challenging issues facing the chemical sciences. In this study, the first highly chemoselective reactions of N -acylpyrroles via either an anionic Fries rearrangement (pyrrole dance) or a C–H functionalization of toluene to provide aryl benzyl ketones are advanced. This efficient and operationally simple approach enables the synthesis of either 2-aroylpyrroles or aryl benzyl ketones in good to excellent yields under transition metal-free conditions. The choice of base plays a crucial role in controlling the chemoselectivity. The aroylation of toluene derivatives was observed with N -acylpyrroles when subjected to KN(SiMe 3 ) 2 , while anionic Fries rearrangement products were produced with LiN(SiMe 3 ) 2 . Surprisingly, cross-over experiments indicate that the anionic Fries rearrangement is an intermolecular process. The aroylation reaction has the advantage over Weinreb amide chemistry in that it does not require preformed organometallic reagents or cryogenic temperatures.more » « less