skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evaluation of preservation protocols for oxygen‐sensitive minerals within laminated aquatic sediments
Abstract Laminated sediments can record seasonal changes in sedimentation of material from anoxic waters, including minerals of the redox‐sensitive elements Fe, Mn, and S that form under varying oxygen levels, mineral saturation conditions, and from microbial metabolism. However, preserving the oxygen‐sensitive minerals for identification is challenging when preservation of the spatial arrangement of laminae is also required. In this study, we compare methods for embedding sedimentary materials from anoxic waters and sediments from Brownie Lake, Minnesota, USA for analysis of the speciation for Fe, Mn, and S using synchrotron‐based X‐ray absorption near edge spectroscopy (XANES). We found that acetone dehydration and resin replacement in a 100% N2glovebox successfully preserved the speciation of Fe and Mn minerals within laminated sediments. However, acetone removed some sulfur species from sediments, and epoxies contained sulfur species, which challenged identification of native sulfur species. Results from this study will aid researchers who are interested in spatial analysis of oxygen sensitive sediments, soils, or microbial mats in choosing a preservation method.  more » « less
Award ID(s):
1660691 1944946
PAR ID:
10443873
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Limnology and Oceanography: Methods
Volume:
21
Issue:
3
ISSN:
1541-5856
Format(s):
Medium: X Size: p. 127-140
Size(s):
p. 127-140
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Low oxygen conditions in the modern Baltic Sea are exacerbated by human activities; however, anoxic conditions also prevailed naturally over the Holocene. Few studies have characterized the specific paleoredox conditions (manganous, ferruginous, euxinic) and their frequency in southern Baltic sub-basins during these ancient events. Here, we apply a suite of isotope systems (Fe, Mo, S) and associated elemental proxies (e.g., Fe speciation, Mn) to specifically define water column redox regimes through the Baltic Holocene in a sill-proximal to sill-distal transect (Lille Belt, Bornholm Basin, Landsort Deep) using samples collected during the Integrated Ocean Drilling Program Expedition 347. At the sill-proximal Lille Belt, there is evidence for anoxic manganous/ferruginous conditions for most of the cored interval following the transition from the Ancylus Lake to Littorina Sea but with no clear excursion to more reducing or euxinic conditions associated with the Holocene Thermal Maximum (HTM) or Medieval Climate Anomaly (MCA) events. At the sill-distal southern sub-basin, Bornholm Basin, a combination of Fe speciation, pore water Fe, and solid phase Mo concentration and isotope data point to manganous/ferruginous conditions during the Ancylus Lake-to-Littorina Sea transition and HTM but with only brief excursions to intermittently or weakly euxinic conditions during this interval. At the western Baltic Proper sub-basin, Landsort Deep, new Fe and S isotope data bolster previous Mo isotope records and Fe speciation evidence for two distinct anoxic periods but also suggest that sulfide accumulation beyond transient levels was largely restricted to the sediment-water interface. Ultimately, the combined data from all three locations indicate that Fe enrichments typically indicative of euxinia may be best explained by Fe deposition as oxides following events likely analogous to the periodic incursions of oxygenated North Sea waters observed today, with subsequent pyrite formation in sulfidic pore waters. Additionally, the Mo isotope data from multiple Baltic Sea southern basins argue against restricted and widespread euxinic conditions, as has been demonstrated in the Baltic Proper and Bothnian Sea during the HTM or MCA. Instead, similar to today, each past Baltic anoxic event is characterized by redox conditions that become progressively more reducing with increasing distance from the sill. 
    more » « less
  2. Sousa, Filipa L.; Schleper, Christa M. (Ed.)
    ABSTRACT Life emerged and diversified in the absence of molecular oxygen. The prevailing anoxia and unique sulfur chemistry in the Paleo-, Meso-, and Neoarchean and early Proterozoic eras may have supported microbial communities that differ from those currently thriving on the earth’s surface. Zodletone spring in southwestern Oklahoma represents a unique habitat where spatial sampling could substitute for geological eras namely, from the anoxic, surficial light-exposed sediments simulating a preoxygenated earth to overlaid water column where air exposure simulates oxygen intrusion during the Neoproterozoic era. We document a remarkably diverse microbial community in the anoxic spring sediments, with 340/516 (65.89%) of genomes recovered in a metagenomic survey belonging to 200 bacterial and archaeal families that were either previously undescribed or that exhibit an extremely rare distribution on the current earth. Such diversity is underpinned by the widespread occurrence of sulfite, thiosulfate, tetrathionate, and sulfur reduction and the paucity of sulfate reduction machineries in these taxa. Hence, these processes greatly expand lineages mediating reductive sulfur-cycling processes in the tree of life. An analysis of the overlaying oxygenated water community demonstrated the development of a significantly less diverse community dominated by well-characterized lineages and a prevalence of oxidative sulfur-cycling processes. Such a transition from ancient novelty to modern commonality underscores the profound impact of the great oxygenation event on the earth’s surficial anoxic community. It also suggests that novel and rare lineages encountered in current anaerobic habitats could represent taxa that once thrived in an anoxic earth but have failed to adapt to earth’s progressive oxygenation. IMPORTANCE Life on earth evolved in an anoxic setting; however, the identity and fate of microorganisms that thrived in a preoxygenated earth are poorly understood. In Zodletone spring, the prevailing geochemical conditions are remarkably similar to conditions prevailing in surficial earth prior to oxygen buildup in the atmosphere. We identify hundreds of previously unknown microbial lineages in the spring and demonstrate that these lineages possess the metabolic machinery to mediate a wide range of reductive sulfur processes, with the capacity to respire sulfite, thiosulfate, sulfur, and tetrathionate, rather than sulfate, which is a reflection of the differences in sulfur-cycling chemistry in ancient versus modern times. Collectively, such patterns strongly suggest that microbial diversity and sulfur-cycling processes in a preoxygenated earth were drastically different from the currently observed patterns and that the Great Oxygenation Event has precipitated the near extinction of a wide range of oxygen-sensitive lineages and significantly altered the microbial reductive sulfur-cycling community on earth. 
    more » « less
  3. Terrestrial environments have been suggested as an oxic haven for eukaryotic life and diversification during portions of the Proterozoic Eon when the ocean was dominantly anoxic. However, iron speciation and Fe/Al data from the ca. 1.1-billion-year-old Nonesuch Formation, deposited in a large lake and bearing a diverse assemblage of early eukaryotes, are interpreted to indicate persistently anoxic conditions. To shed light on these distinct hypotheses, we analyzed two drill cores spanning the transgression into the lake and its subsequent shallowing. While the proportion of highly reactive to total iron (Fe HR /Fe T ) is consistent through the sediments and typically in the range taken to be equivocal between anoxic and oxic conditions, magnetic experiments and petrographic data reveal that iron exists in three distinct mineral assemblages resulting from an oxycline. In the deepest waters, reductive dissolution of iron oxides records an anoxic environment. However, the remainder of the sedimentary succession has iron oxide assemblages indicative of an oxygenated environment. At intermediate water depths, a mixed-phase facies with hematite and magnetite indicates low oxygen conditions. In the shallowest waters of the lake, nearly every iron oxide has been oxidized to its most oxidized form, hematite. Combining magnetics and textural analyses results in a more nuanced understanding of ambiguous geochemical signals and indicates that for much of its temporal duration, and throughout much of its water column, there was oxygen in the waters of Paleolake Nonesuch. 
    more » « less
  4. It is clear from modern analogue studies that O2-deficient conditions favor preservation of organic matter (OM) in fine-grained sedimentary rocks (black shales). It is also clear that appreciable productivity and OM flux to the sediment are required to establish and maintain these conditions. However, debates regarding redox controls on OM accumulation in black shales have mainly focused on oxic versus anoxic conditions, and the implications of different anoxic redox states remain unexplored. Here, we present detailed multi-proxy sedimentary geochemical studies of major Paleozoic and Mesozoic North American black shale units to elucidate their depositional redox conditions. This is the first broad-scale study to use a consistent geochemical methodology and to incorporate data from Fe-speciation – presently the only redox proxy able to clearly distinguish anoxic depositional conditions as ferruginous (H2S-limited) or euxinic (H2S-replete, Fe-limited). These data are coupled with total organic carbon (TOC), programmed pyrolysis, and redox-sensitive trace element proxies, with almost all measurements analyzed using the same geochemical methodology. Consistent with expectations based on previous geochemical and paleontological/ichnological studies, these analyses demonstrate that the study units were almost exclusively deposited under anoxic bottom waters. These analyses also demonstrate that there is wide variance in the prevalence of euxinic versus ferruginous conditions, with many North American black shale units deposited under predominantly ferruginous or oscillatory conditions. TOC is significantly higher under euxinic bottom waters in analyses of both preserved (present day) TOC and reconstructed initial TOC values, although sediments deposited under both redox states do have economically viable TOC content. While this correlation does not reveal the mechanism behind higher organic enrichment in euxinic environments, which may be different in different basins, it does open new research avenues regarding resource exploration and the biogeochemistry of ancient reducing environments. 
    more » « less
  5. Redox active species in Arctic lacustrine sediments play an important, regulatory role in the carbon cycle, yet there is little information on their spatial distribution, abundance, and oxidation states. Here, we use voltammetric microelectrodes to quantify the in situ concentrations of redox-active species at high vertical resolution (mm to cm) in the benthic porewaters of an oligotrophic Arctic lake (Toolik Lake, AK, USA). Mn( ii ), Fe( ii ), O 2 , and Fe( iii )-organic complexes were detected as the major redox-active species in these porewaters, indicating both Fe( ii ) oxidation and reductive dissolution of Fe( iii ) and Mn( iv ) minerals. We observed significant spatial heterogeneity in their abundance and distribution as a function of both location within the lake and depth. Microbiological analyses and solid phase Fe( iii ) measurements were performed in one of the Toolik Lake cores to determine the relationship between biogeochemical redox gradients and microbial communities. Our data reveal iron cycling involving both oxidizing (FeOB) and reducing (FeRB) bacteria. Additionally, we profiled a large microbial iron mat in a tundra seep adjacent to an Arctic stream (Oksrukuyik Creek) where we observed Fe( ii ) and soluble Fe( iii ) in a highly reducing environment. The variable distribution of redox-active substances at all the sites yields insights into the nature and distribution of the important terminal electron acceptors in both lacustrine and tundra environments capable of exerting significant influences on the carbon cycle. 
    more » « less