skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Numerical analysis of a corrected Smagorinsky model
Abstract The classical Smagorinsky model's solution is an approximation to a (resolved) mean velocity. Since it is an eddy viscosity model, it cannot represent a flow of energy from unresolved fluctuations to the (resolved) mean velocity. This model has recently been corrected to incorporate this flow and still be well‐posed. Herein we first develop some basic properties of the corrected model. Next, we perform a complete numerical analysis of two algorithms for its approximation. They are tested and proven to be effective.  more » « less
Award ID(s):
2110379
PAR ID:
10443897
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Numerical Methods for Partial Differential Equations
Volume:
39
Issue:
1
ISSN:
0749-159X
Page Range / eLocation ID:
p. 356-382
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The collisions in a dilute polydisperse suspension of sub-Kolmogorov spheres with negligible inertia settling in a turbulent flow and interacting through hydrodynamics including continuum breakdown on close approach are studied. A statistically significant decrease in ideal collision rate without gravity is resolved via a Lagrangian stochastic velocity-gradient model at Taylor microscale Reynolds number larger than those accessible by current direct numerical simulation capabilities. This arises from the difference between the mean inward velocity and the root-mean-square particle relative velocity. Differential sedimentation, comparable to the turbulent shear relative velocity, but minimally influencing the sampling of the velocity gradient, diminishes the Reynolds number dependence and enhances the ideal collision rate i.e. the rate without interactions. The collision rate is retarded by hydrodynamic interactions between sphere pairs and is governed by non-continuum lubrication as well as full continuum hydrodynamic interactions at larger separations. The collision efficiency (ratio of actual to ideal collision rate) depends on the relative strength of differential sedimentation and turbulent shear, the size ratio of the interacting spheres and the Knudsen number (defined as the ratio of the mean-free path of the gas to the mean radius of the interacting spheres). We develop an analytical approximation to concisely report computed results across the parameter space. This accurate closed form expression could be a critical component in computing the evolution of the size distribution in applications such as water droplets in clouds or commercially valuable products in industrial aggregators. 
    more » « less
  2. Abstract Floating treatment wetlands (FTWs) are efficient at wastewater treatment; however, data and physical models describing water flow through them remain limited. A two‐domain model is proposed dividing the flow region into an upper part characterizing the flow through suspended vegetation and an inner part describing the vegetation‐free zone. The suspended vegetation domain is represented as a porous medium characterized by constant permeability thereby allowing Biot's Law to be used to describe the mean velocity and stress profiles. The flow in the inner part is bounded by asymmetric stresses arising from interactions with the suspended vegetated (porous) base and solid channel bed. An asymmetric eddy viscosity model is employed to derive an integral expression for the shear stress and the mean velocity profiles in this inner layer. The solution features an asymmetric shear stress index that reflects two different roughness conditions over the vegetation‐induced auxiliary bed and the physical channel bed. A phenomenological model is then presented to explain this index. An expression for the penetration depth into the porous medium defined by 10% of the maximum shear stress is also derived. The predicted shear stress profile, local mean velocity profile, and bulk velocity agree with the limited experiments published in the literature. 
    more » « less
  3. Abstract Ocean general circulation models (OGCMs) are often used at horizontal resolutions that preclude the appearance of mesoscale eddies. The ocean mesoscale constitutes a significant component of ocean variability, and OGCMs whose resolutions are too coarse to represent the mesoscale are necessarily lacking this variability. In addition to being variable, the ocean mesoscale also induces variability on larger scales that could be resolved on a coarse grid, but coarse OGCMs often lack this variability too. This paper develops a stochastic parameterization that adds small increments to an OGCM's lateral velocity field, which excites natural modes of variability in the model. The rate at which these velocity increments add energy to the flow is tied to the rate at which the Gent‐McWilliams parameterization—a popular parameterization of the effect of mesoscale eddies on tracer transport—removes potential energy from the resolved scales. The stochastic parameterization is implemented in a non‐eddying OGCM, where it is shown to increase the variability significantly. 
    more » « less
  4. We examine the accuracy of p values obtained using the asymptotic mean and variance (MV) correction to the distribution of the sample standardized root mean squared residual (SRMR) proposed by Maydeu-Olivares to assess the exact fit of SEM models. In a simulation study, we found that under normality, the MV-corrected SRMR statistic provides reasonably accurate Type I errors even in small samples and for large models, clearly outperforming the current standard, that is, the likelihood ratio (LR) test. When data shows excess kurtosis, MV-corrected SRMR p values are only accurate in small models ( p = 10), or in medium-sized models ( p = 30) if no skewness is present and sample sizes are at least 500. Overall, when data are not normal, the MV-corrected LR test seems to outperform the MV-corrected SRMR. We elaborate on these findings by showing that the asymptotic approximation to the mean of the SRMR sampling distribution is quite accurate, while the asymptotic approximation to the standard deviation is not. 
    more » « less
  5. Abstract Float trajectories are simulated using Lagrangian particle tracking software and eddy‐permitting ocean model output from the Estimating the Circulation and Climate of the Ocean, Phase II (ECCO2) project. We find that Argo‐like particles near strong mean flows tend to accelerate while at their parking depth. This effect is pronounced in western boundary current regions and in the Antarctic Circumpolar Current system. The acceleration is associated with eddy‐mean flow interactions: Eddies converge particles toward regions with stronger mean currents. Particles do not accelerate when they are advected by the eddy or mean flow alone. During a 9‐day parking period, speed increases induced by the eddy‐mean flow interactions can be as large as 2 cm s−1, representing roughly 10% of the mean velocity. If unaccounted for, this acceleration could bias velocities inferred from observed Argo float trajectories. 
    more » « less