Abstract The cost‐effective and scalable synthesis and patterning of soft nanomaterial composites with improved electrical conductivity and mechanical stretchability remains challenging in wearable devices. This work reports a scalable, low‐cost fabrication approach to directly create and pattern crumpled porous graphene/NiS2nanocomposites with high mechanical stretchability and electrical conductivity through laser irradiation combined with electrodeposition and a pre‐strain strategy. With modulated mechanical stretchability and electrical conductivity, the crumpled graphene/NiS2nanocomposite can be readily patterned into target geometries for application in a standalone stretchable sensing platform. By leveraging the electrical energy harvested from the kinetic motion from wearable triboelectric nanogenerator (TENG) and stored in micro‐supercapacitor arrays (MSCAs) to drive biophysical sensors, the system is demonstrated to monitor human motions, body temperature, and toxic gas in the exposed environment. The material selections, design strategies, and fabrication approaches from this study provide functional nanomaterial composites with tunable properties for future high‐performance bio‐integrated electronics.
more »
« less
Single Step Assembly of Janus Porous Biomaterial by Sub‐Ambient Temperature Electrodeposition
Abstract Janus porous biomaterials are gaining increasing attention and there are considerable efforts to develop simple, rapid, and scalable methods capable of tuning micro‐ and macro‐structures. Here, a single‐step electro‐fabrication method to create a Janus porous film by the electrodeposition of the amino‐polysaccharide chitosan is reported. Specifically, a Janus structure emerges spontaneously when electrodeposition is performed at sub‐ambient temperature (0–5 °C). Sub‐ambient temperature electrodeposition experiments show that: a Janus microstructure emerges (potentially as the result of a subtle alteration of the intermolecular interactions responsible for self‐assembly); important microstructural features (pore size, porosity, and thicknesses) can be tuned by conditions; and this method is readily scalable (vs serial printing) and can yield complex tubular structures with Janus faces. In vitro studies demonstrate anisotropic cell guidance, and in vivo studies using a rat calvarial defect model further confirm the beneficial features of such Janus porous film for guided bone regeneration. In summary, these results further demonstrate that electro‐fabrication provides a simple and scalable platform technology for the controlled functional structures of soft matter for applications in regenerative medicine.
more »
« less
- Award ID(s):
- 1932963
- PAR ID:
- 10443989
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Small
- Volume:
- 18
- Issue:
- 48
- ISSN:
- 1613-6810
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)The development of synthetic methods for micro/nano materials with precisely controlled structures, morphologies, and local compositions is of great importance for the advancement of modern nanotechnology. The electrospray method is a “platform” approach for the preparation of a broad range of micro-/nanostructures; electrospray is simple and scalable. This review summarizes recent research on the micro-/nanostructures prepared via the electrospray route. These include spherical structures ( e.g. simple, porous, Janus, and core–shell particles), non-spherical structures ( e.g. red blood cell-like and spindle-like particles, multi-compartment microrods, 2D holey nanosheets, and nanopyramids), and assembled structures. The experimental details, underlying physical/chemical principles, and key benefits of these structures are comprehensively discussed. The effects and importance of nozzle design, properties of feeding solutions ( e.g. concentration of solute, polymer additives, solvent/nonsolvent combinations), working environment ( e.g. temperature and humidity), and types of collection media are highlighted.more » « less
-
null (Ed.)Abstract The conventional manufacturing process of aerogel insulation material relies largely on the supercritical drying, which suffers from issues of massive energy consumption, high-cost equipment and prolonged processing time. With the consideration of large market demand of the aerogel insulation material in the next decade, a low-cost and scalable fabrication technique is highly desired. In this paper, a direct ink writing (DIW) method is used to three-dimensionally fabricate the silica aerogel insulation material, followed by room-temperature and ambient pressure drying. Compared to the supercritical drying and freeze-drying, the reported method significantly reduces the fabrication time and costs. The cost-effective DIW technique offers the capability to print complex hollow internal structures, coupled with the porous structure, is found to be beneficial to the thermal insulation property. The addition of fiber to the ink assures the durability of the fabricated product. The foam ink preparation methods and the printability are demonstrated in this paper, along with the printed samples for characterizing thermal insulation performance and mechanical properties.more » « less
-
Abstract Metal-insulator-semiconductor (MIS) structures are widely used in Si-based solar water-splitting photoelectrodes to protect the Si layer from corrosion. Typically, there is a tradeoff between efficiency and stability when optimizing insulator thickness. Moreover, lithographic patterning is often required for fabricating MIS photoelectrodes. In this study, we demonstrate improved Si-based MIS photoanodes with thick insulating layers fabricated using thin-film reactions to create localized conduction paths through the insulator and electrodeposition to form metal catalyst islands. These fabrication approaches are low-cost and highly scalable, and yield MIS photoanodes with low onset potential, high saturation current density, and excellent stability. By combining this approach with a p+n-Si buried junction, further improved oxygen evolution reaction (OER) performance is achieved with an onset potential of 0.7 V versus reversible hydrogen electrode (RHE) and saturation current density of 32 mA/cm2under simulated AM1.5G illumination. Moreover, in stability testing in 1 M KOH aqueous solution, a constant photocurrent density of ~22 mA/cm2is maintained at 1.3 V versus RHE for 7 days.more » « less
-
Abstract The macro-porous ceramics has promising durability and thermal insulation performances. A cost-effective and scalable additive manufacturing technique for the fabrication of macro-porous ceramics, with a facile approach to control the printed porosity is reported in the paper. Several ceramic inks were prepared, the foaming agent was used to generate gaseous bubbles in the ink, followed by the direct ink writing and the ambient-pressure and room-temperature drying to create the three-dimensional geometries. The experimental studies were performed to optimize the printing quality. A set of studies revealed the optimal printing process parameters for printing the foamed ceramic ink with a high spatial resolution and fine surface quality. Varying the concentration of the foaming agent enabled the controllability of the structural porosity. The maximum porosity can reach 85%, with a crack-free internal porous structure. The tensile tests showed that the printed macro-porous ceramics have enhanced durability with the addition of fiber. With a high-fidelity 3D printing process and precise control of the porosity, the printed samples exhibited a low thermal conductivity and high mechanical strength.more » « less
An official website of the United States government
