skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bounded vorticity for the 3D Ginzburg–Landau model and an isoflux problem
Abstract We consider the full three‐dimensional Ginzburg–Landau model of superconductivity with applied magnetic field, in the regime where the intensity of the applied field is close to the ‘first critical field’ at which vortex filaments appear, and in the asymptotics of a small inverse Ginzburg–Landau parameter . This onset of vorticity is directly related to an ‘isoflux problem’ on curves (finding a curve that maximizes the ratio of a magnetic flux by its length), whose study was initiated in [22] and which we continue here. By assuming a nondegeneracy condition for this isoflux problem, which we show holds at least for instance in the case of a ball, we prove that if the intensity of the applied field remains below , the total vorticity remains bounded independently of , with vortex lines concentrating near the maximizer of the isoflux problem, thus extending to the three‐dimensional setting a two‐dimensional result of [28]. We finish by showing an improved estimate on the value of in some specific simple geometries.  more » « less
Award ID(s):
2000205
PAR ID:
10444102
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Oxford University Press (OUP)
Date Published:
Journal Name:
Proceedings of the London Mathematical Society
Volume:
126
Issue:
3
ISSN:
0024-6115
Page Range / eLocation ID:
p. 1015-1062
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Inviscid spatial Landau damping is studied experimentally for the case of oscillatory motion of a two-dimensional vortex about its elliptical equilibrium in the presence of an applied strain flow. The experiments are performed using electron plasmas in a Penning–Malmberg trap. They exploit the isomorphism between the two-dimensional Euler equations for an ideal fluid and the drift-Poisson equations for the plasma, where plasma density is the analog of vorticity. Perturbed elliptical vortex states are created using [Formula: see text] strain flows, which are generated by applying voltages to electrodes surrounding the plasma. Measurements of spatial Landau damping (also called critical-layer damping) are in agreement with previous studies in the absence of an applied strain, where the damping is due to a resonance between the local fluid motion and the vortex oscillations. Interestingly, the damping rate does not change significantly over a wide range of applied strain rates. This can be accurately predicted from the initial vorticity profile, even though the resonant frequency is reduced substantially due to the applied strain. For higher amplitude perturbations, nonlinear trapping oscillations also exhibit behavior similar to the strain-free case. In principle, higher-order effects of the applied strain, such as separatrix crossing of peripheral vorticity and interactions with harmonics of the fundamental resonance, are expected to change the damping rate. However, this occurs only for conditions that are not realized in the experiments described here. Vortex-in-cell simulations are used to investigate the possible roles of these effects. 
    more » « less
  2. It is well-known that under suitable hypotheses, for a sequence of solutions of the (simplified) Ginzburg–Landau equations-\Delta u_{\varepsilon} +\varepsilon^{-2}(|u_{\varepsilon}|^{2}-1)u_{\varepsilon} = 0, the energy and vorticity concentrate as\varepsilon\to 0around a codimension2stationary varifold – a (measure-theoretic) minimal surface. Much less is known about the question of whether, given a codimension2minimal surface, there exists a sequence of solutions for which the given minimal surface is the limiting concentration set. The corresponding question is very well-understood for minimal hypersurfaces and the scalar Allen–Cahn equation, and for the Ginzburg–Landau equations when the minimal surface is locally area-minimizing, but otherwise quite open. We consider this question on a3-dimensional closed Riemannian manifold(M,g), and we prove that any embedded nondegenerate closed geodesic can be realized as the asymptotic energy/ vorticity concentration set of a sequence of solutions of the Ginzburg–Landau equations. 
    more » « less
  3. One of the most promising routes for achieving high critical currents in superconductors is to incorporate dispersed, non-superconducting nanoparticles to control the dissipative motion of vortices. However, these inclusions reduce the overall superconducting volume and can strain the interlaying superconducting matrix, which can detrimentally reduce Tc. Consequently, an optimal balance must be achieved between the nanoparticle density np and size d. Determining this balance requires garnering a better understanding of vortex–nanoparticle interactions, described by strong pinning theory. Here, we map the dependence of the critical current on nanoparticle size and density in (Y0.77, Gd0.23)Ba2Cu3O7−δ films in magnetic fields of up to 35 T and compare the trends to recent results from time-dependent Ginzburg–Landau simulations. We identify consistency between the field-dependent critical current Jc(B) and expectations from strong pinning theory. Specifically, we find that Jc ∝ B−α, where α decreases from 0.66 to 0.2 with increasing density of nanoparticles and increases roughly linearly with nanoparticle size d/ξ (normalized to the coherence length). At high fields, the critical current decays faster (∼B−1), suggesting that each nanoparticle has captured a vortex. When nanoparticles capture more than one vortex, a small, high-field peak is expected in Jc(B). Due to a spread in defect sizes, this novel peak effect remains unresolved here. Finally, we reveal that the dependence of the vortex creep rate S on nanoparticle size and density roughly mirrors that of α, and we compare our results to low-T nonlinearities in S(T) that are predicted by strong pinning theory. 
    more » « less
  4. We simulate the motion of a commensurate vortex lattice in a periodic lattice of artificial circular pinning sites having different diameters, pinning strengths, and spacings using the time-dependent Ginzburg-Landau formalism. Above some critical DC current density Jc, the vortices depin, and the resulting steady-state motion then induces an oscillatory electric field E (t) with a defect "hopping" frequency f0, which depends on the applied current density and the pinning landscape characteristics. The frequency generated can be locked to an applied AC current density over some range of frequencies, which depends on the amplitude of the DC as well as the AC current densities. Both synchronous and asynchronous collective hopping behaviors are studied as a function of the supercell size of the simulated system and the (asymptotic) synchronization threshold current densities determined. 
    more » « less
  5. In this paper a model for viscous boundary and shear layers in three dimensions is introduced and termed a vortex-entrainment sheet. The vorticity in the layer is accounted for by a conventional vortex sheet. The mass and momentum in the layer are represented by a two-dimensional surface having its own internal tangential flow. Namely, the sheet has a mass density per-unit-area making it dynamically distinct from the surrounding outer fluid and allowing the sheet to support a pressure jump. The mechanism of entrainment is represented by a discontinuity in the normal component of the velocity across the sheet. The velocity field induced by the vortex-entrainment sheet is given by a generalized Birkhoff–Rott equation with a complex sheet strength. The model was applied to the case of separation at a sharp edge. No supplementary Kutta condition in the form of a singularity removal is required as the flow remains bounded through an appropriate balance of normal momentum with the pressure jump across the sheet. A pressure jump at the edge results in the generation of new vorticity. The shedding angle is dictated by the normal impulse of the intrinsic flow inside the bound sheets as they merge to form the free sheet. When there is zero entrainment everywhere the model reduces to the conventional vortex sheet with no mass. Consequently, the pressure jump must be zero and the shedding angle must be tangential so that the sheet simply convects off the wedge face. Lastly, the vortex-entrainment sheet model is demonstrated on several example problems. 
    more » « less