skip to main content


Title: Paleointensity Estimates From the Pleistocene of Northern Israel: Implications for Hemispheric Asymmetry in the Time‐Averaged Field
Abstract

Twenty‐two sites, subjected to an IZZI‐modified Thellier‐Thellier experiment and strict selection criteria, recover a paleomagnetic axial dipole moment (PADM) of 62.2 ± 30.6 ZAm2in Northern Israel over the Pleistocene (0.012–2.58 Ma). Pleistocene data from comparable studies from Antarctica, Iceland, and Hawaii, re‐analyzed using the same criteria and age range, show that the Northern Israeli data are on average slightly higher than those from Iceland (PADM = 53.8 ± 23 ZAm2,n = 51 sites) and even higher than the Antarctica average (PADM = 40.3 ± 17.3 ZAm2,n = 42 sites). Also, the data from the Hawaiian drill core, HSDP2, spanning the last half million years (PADM = 76.7 ± 21.3 ZAm2,n = 59 sites) are higher than those from Northern Israel. These results, when compared to Pleistocene results filtered from the PINT database (www.pintdb.org) suggest that data from the Northern hemisphere mid‐latitudes are on average higher than those from the southern hemisphere and than those from latitudes higher than 60°N. The weaker intensities found at high (northern and southern) latitudes therefore, cannot be attributed to inadequate spatiotemporal sampling of a time‐varying dipole moment or low quality data. The high fields in mid‐latitude northern hemisphere could result from long‐lived non‐axial dipole terms in the geomagnetic field with episodes of high field intensities occurring at different times in different longitudes. This hypothesis is supported by an asymmetry predicted from the Holocene, 100 kyr, and 5 million year time‐averaged geomagnetic field models.

 
more » « less
Award ID(s):
1827263 1345003 2126298
NSF-PAR ID:
10444104
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geochemistry, Geophysics, Geosystems
Volume:
23
Issue:
9
ISSN:
1525-2027
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Feinberg, Joshua (Ed.)
    Twenty-two sites, subjected to an IZZI-modified Thellier-Thellier experiment and strict selection criteria, recover a paleomagnetic axial dipole moment (PADM) of 62.24$\pm$ 30.6 ZAm$^2$ in Northern Israel over the Pleistocene (0.012 - 2.58 Ma). Pleistocene data from comparable studies from Antarctica, Iceland, and Hawaii, re-analyzed using the same criteria and age range, show that the Northern Israeli data are on average slightly higher than those from Iceland (PADM = 53.8 $\pm$ 23 ZAm$^2$, n = 51 sites) and even higher than the Antarctica average %\cite{asefaw21} (PADM = 40.3 $\pm$ 17.3 ZAm$^2$, n = 42 sites). Also, the data from the Hawaiian drill core, HSDP2, spanning the last half million years (PADM = 76.7 $\pm$ 21.3 ZAm$^2$, n = 59 sites) are higher than those from Northern Israel. These results, when compared to Pleistocene results filtered from the PINT database (www.pintdb.org) suggest that data from the Northern hemisphere mid-latitudes are on average higher than those from the southern hemisphere and than those from latitudes higher than 60$^{\circ}$N. The weaker intensities found at high (northern and southern) latitudes therefore, cannot be attributed to inadequate spatio-temporal sampling of a time-varying dipole moment or low quality data. The high fields in mid-latitude Northern hemisphere could result from long-lived non-axial dipole terms in the geomagnetic field with episodes of high field intensities occurring at different times in different longitudes. This hypothesis is supported by an asymmetry predicted from the Holocene, 100 kyr, and five million year time-averaged geomagnetic field models. 
    more » « less
  2. Abstract

    Statistical analysis of geomagnetic paleosecular variation (PSV) and time‐averaged field has been largely based on global compilations of paleomagnetic data from lava flows. These show different trends in the averaged inclination anomaly (ΔI) between the two hemispheres, with small positive (<2°) anomalies in midsouthern latitudes and large negative (> −5°) anomalies in midnorthern latitudes. To inspect the large ΔI between 20°N and 40°N we augment the global data with a new paleomagnetic data set from the Golan‐Heights (GH), a Plio‐Pleistocene volcanic plateau in northeast Israel, located at 32–33°N. The GH data set consists of 91 lava flows sites: 40 sites obtained in the 1990s and 51 obtained in this study. The chronology of the flows is constrained by 5740Ar/39Ar ages: 39 from previous studies and 18 from this study, which together cover most of the GH plateau. We show that the 1990s data set might be affected by block rotations and does not fully sample PSV. The Plio‐Pleistocene pole (86.3°N, 120.8°E,N= 44,k= 25,α95= 4.4°), calculated after applying selection criteria with Fisher precision parameter (k) ≥ 100 and number of specimens per site (n) ≥ 5 is consistent with a geocentric axial dipole field and shows smaller inclination anomaly (ΔI= −0.4°) than predicted by global compilations and PSV models. Reexamination of the inclination anomaly in the global compilation using different calculation methods and selection criteria suggests that inclination anomaly values are affected by (1) inclusion of poor quality data, (2) averaging data by latitude bins, and (3) the way the inclination anomaly is calculated.

     
    more » « less
  3. Abstract

    Due to a dearth of data from high‐latitude paleomagnetic sites, it is not currently clear if the geocentric axial dipole (GAD) hypothesis accurately describes the long‐term behavior of the geomagnetic field at high latitudes. Here we present new paleomagnetic and paleointensity data from the James Ross Island (JRI) volcanic group, located on the Antarctic Peninsula. This data set addresses a notable lack of data from the 60°–70°S latitude bin and includes 251 samples from 31 sites, spanning 0.99–6.8 Ma in age. We also include positive fold, conglomerate, and baked contact tests. Paleointensity data from three methods (Thellier‐Thellier, pseudo‐Thellier, and Tsunakawa‐Shaw) were collected from all sites. The Thellier‐Thellier method had low yields and produced unreliable data, likely due to sample alteration during heating. Results from the Tsunakawa‐Shaw and pseudo‐Thellier methods were more consistent, and we found a bimodal distribution of paleointensity estimates. Most sites yielded either <15 μT or >40 μT, which together span a range of estimates from long‐term geomagnetic field models, but do not favor any model in particular. Alternating‐field demagnetization of these samples, when combined with preexisting data, yields a revised paleomagnetic pole of −87.5°, 025°,α95 = 3.6° for the Antarctic Peninsula over the last ∼5 Ma, which suggests that the current data set is sufficiently large to “average out” secular variation. Finally, the C2r/C2n transition was probably found at a site on JRI, and further geochronological and paleomagnetic study of these units could refine the age of this reversal.

     
    more » « less
  4. Abstract

    A foundational assumption in paleomagnetism is that the Earth's magnetic field behaves as a geocentric axial dipole (GAD) when averaged over sufficient timescales. Compilations of directional data averaged over the past 5 Ma yield a distribution largely compatible with GAD, but the distribution of paleointensity data over this timescale is incompatible. Reasons for the failure of GAD include: (a) Arbitrary “selection criteria” to eliminate “unreliable” data vary among studies, so the paleointensity database may include biased results. (b) The age distribution of existing paleointensity data varies with latitude, so different latitudinal averages represent different time periods. (c) The time‐averaged field could be truly non‐dipolar. Here, we present a consistent methodology for analyzing paleointensity results and comparing time‐averaged paleointensities from different studies. We apply it to data from Plio/Pleistocene Hawai'ian igneous rocks, sampled from fine‐grained, quickly cooled material (lava flow tops, dike margins and scoria cones) and subjected to the IZZI‐Thellier technique; the data were analyzed using the Bias Corrected Estimation of Paleointensity method of Cych et al. (2021,https://doi.org/10.1029/2021GC009755), which produces accurate paleointensity estimates without arbitrarily excluding specimens from the analysis. We constructed a paleointensity curve for Hawai'i over the Plio/Pleistocene using the method of Livermore et al. (2018,https://doi.org/10.1093/gji/ggy383), which accounts for the age distribution of data. We demonstrate that even with the large uncertainties associated with obtaining a mean field from temporally sparse data, our average paleointensities obtained from Hawai'i and Antarctica (reanalyzed from Asefaw et al., 2021,https://doi.org/10.1029/2020JB020834) are not GAD‐like from 0 to 1.5 Ma but may be prior to that.

     
    more » « less
  5. Abstract

    Ancient lake deposits in the Mojave Desert indicate that the water cycle in this currently dry place was radically different under past climates. Here we revisit a 700 m core drilled 55 years ago from Searles Valley, California, that recovered evidence for a lacustrine phase during the late Pliocene. We update the paleomagnetic age model and extract new biomarker evidence for climatic conditions from lacustrine deposits (3.373–2.706 Ma). The MBT′5Metemperature proxy detects present‐day conditions (21 ± 3°C,n = 2) initially, followed by warmer‐than‐present conditions (25 ± 3°C,n = 17) starting at 3.268 and ending at 2.734 Ma. Bacterial and archeal biomarkers reveal lake salinity increased after 3.268 Ma likely reflecting increased evaporation in response to higher temperatures. The δ13C values of plant waxes (−30.7 ± 1.4‰,n = 28) are consistent with local C3taxa, likely expanded conifer woodlands during the pluvial with less C4than the Pleistocene. δD values (−174 ± 5‰,n = 25) of plant waxes indicate precipitation δD values (−89 ± 5‰,n = 25) in the late Pliocene are within the same range as the late Pleistocene precipitation δD. Microbial biomarkers identify a deep, freshwater lake and a cooling that corresponds to the onset of major Northern Hemisphere glaciation at marine isotope stage marine isotope stages M2 (3.3 Ma). A more saline lake persisted for ∼0.6 Ma across the subsequent warmth of the late Pliocene (3.268–2.734 Ma) before the lake desiccated at the Pleistocene intensification of Northern Hemisphere Glaciation.

     
    more » « less