skip to main content


Title: Stable isotopes of nitrate record effects of the 2015–2016 El Niño and diatom iron limitation on nitrogen cycling in the eastern North Pacific Ocean
Abstract

In eastern boundary current systems, strong coastal upwelling brings deep, nutrient‐rich waters to the surface ocean, supporting a productive food web. The nitrate load in water masses that supply the region can be impacted by a variety of climate‐related processes that subsequently modulate primary productivity. In this study, two coastal upwelling regimes along central and southern California were sampled seasonally for nitrogen and oxygen stable isotopes of nitrate (i.e., nitrate isotopes) over several years (2010–2016) on 14 California Cooperative Oceanic Fisheries Investigations (CalCOFI) cruises. Seasonal, interannual, and spatial variations in euphotic zone nitrate isotopes were largely driven by the extent of nitrate utilization, sometimes linked to iron limitation of diatom productivity. Pronounced isotopic enrichment developed with the El Niño conditions in late 2015 and early 2016 which likely resulted from increased nitrate utilization linked to reduced nitrate supply to the euphotic zone. Differential enrichment of nitrogen and oxygen isotopes was observed in the surface ocean, suggesting that phytoplankton increased their reliance on locally nitrified (recycled) nitrate during warmer and more stratified periods. Overall, nitrate isotopes effectively differentiated important euphotic zone processes such as nitrate assimilation and nitrification, while archiving the influence of disparate controls such as iron limitation and climatic events through their effects on nitrate utilization and isotopic fractionation.

 
more » « less
Award ID(s):
1637632
NSF-PAR ID:
10444123
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Limnology and Oceanography
Volume:
67
Issue:
10
ISSN:
0024-3590
Page Range / eLocation ID:
p. 2140-2156
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Biological nitrogen fixation is a key process balancing the loss of combined nitrogen in the marine nitrogen cycle. Its relevance in upwelling or high nutrient regions is still unclear, with the few available studies in these regions of the ocean reporting rates that vary widely from below detection limit to > 100 nmol N L−1 d−1. In the eastern tropical Atlantic Ocean, two open ocean upwelling systems are active in boreal summer. One is the seasonal equatorial upwelling, where the residual phosphorus associated with aged upwelled waters is suggested to enhance nitrogen fixation in this season. The other is the Guinea Dome, a thermal upwelling dome. We conducted two surveys along 23° W across the Guinea Dome and the Equator from 15° N to 5° S in September 2015 and August–September 2016 with high latitudinal resolution (20–60 nm between stations). The abundance ofTrichodesmiumcolonies was characterized by an Underwater Vision Profiler 5 and the total biological nitrogen fixation in the euphotic layer was measured using the15N2technique. The highest abundances ofTrichodesmiumcolonies were found in the area of the Guinea Dome (9°–15° N) with a maximum of 3 colonies L−1near the surface. By contrast, colonies were almost absent in the Equatorial band between 2° N and 5° S. The highest nitrogen fixation rate was measured at the northern edge of the Guinea Dome in 2016 (ca. 31 nmol N L−1 d−1). In this region, where diazotrophs thrived on a sufficient supply of both phosphorus and iron, a patchy distribution was unveiled by our increased spatial resolution scheme. In the Equatorial band, rates were considerably lower, ranging from below detection limit to ca. 4 nmol N L−1 d−1, with a clear difference in magnitude between 2015 (rates close to zero) and 2016 (average rates around 2 nmol N L−1 d−1). This difference seemed triggered by a contrasting supply of phosphorus between years. Our study stresses the importance of surveys with sampling at fine-scale spatial resolution, and shows unexpected high variability in the rates of nitrogen fixation in the Guinea Dome, a region where diazotrophy is a significant process supplying new nitrogen into the euphotic layer.

     
    more » « less
  2. Abstract

    Nitrification, the microbial conversion of ammonium to nitrite then to nitrate, occurs throughout the oceanic water column, yet the environmental factors influencing the production of nitrate in the euphotic zone (EZ) remain unclear. In this study, the natural abundances of N and O isotopes (δ15N and δ18O, respectively) in nitrate were used in an existing model framework to quantify nitrate contributed by EZ nitrification in the California Current Ecosystem (CCE) during two anomalously warm years. Model data estimated that between 6% and 36% of the EZ nitrate reservoirs were derived from the combined steps of nitrification within the EZ. The CCE data set found nitrification contributions to EZ nitrate to be positively correlated with nitrite concentrations () at the depth of the primary nitrite maximum (PNM). Building on this correlation, EZ nitrification in the southern California Current was estimated to contribute on average 20% ± 6% to EZ nitrate as inferred using the PNMof the long‐term California Cooperative Oceanic Fisheries Investigation (CalCOFI) survey record. A multiple linear regression analysis of the CalCOFI PNMtime series identified two conditions that led to positive deviations in. Enhanced PNM, and potentially enhanced EZ nitrification, may be linked to (1) reduced phytoplankton competition for ammonium () andas interpreted from particulate organic carbon:chlorophyll ratios, and/or (2) to increased supply of(and thenoxidation to) from the degradation of organic nitrogen as interpreted from particulate organic nitrogen concentrations.

     
    more » « less
  3. Dissolved organic nitrogen (DON) is the dominant form of bioavailable nitrogen in the euphotic zone of subtropical gyres, where nitrate (NO3-) concentrations are low. However, the spatial distribution of DON production and consumption in the surface ocean remains poorly resolved due to the relatively narrow range in euphotic zone DON concentrations. Recently, the stable isotopic composition (d15N) of DON has been used to identify DON production and consumption in the surface ocean, making isotopic measurements a more sensitive indicator of DON cycling than concentration measurements alone. Here we report DON concentration and d15N measurements in the upper ~300 m from a zonal transect along ~30˚S in the South Pacific (GO-SHIP P06-2017), including samples in the Western South Pacific (154˚E-170˚W), in the oligotrophic South Pacific Subtropical Gyre (110˚W -170˚W), and overlying the Oxygen Deficient Zone (ODZ) in the east (78˚W-110˚W). We observed small variations in surface DON concentrations. Surface DON in Western South Pacific, oligotrophic South Pacific Subtropical Gyre and above the ODZ are 4.6±1.0 µM, 4.3±0.7 µM, and 4.8±0.5 µM, respectively. d15N of DON in the euphotic zone is lower in the west and higher in the east, consistent with distributions of nitrogen fixation and denitrification, respectively, in the South Pacific. Similar decreasing trend in DON d15N in the euphotic zone and subsurface nitrate d15N was observed from the east to the west in the South Pacific, suggesting the d15N in subsurface nitrate could be imprinted in the DON d15N in the euphotic zone. Low surface ocean DON d15N in the Western South Pacific (2.4±1.8 ‰) and oligotrophic South Pacific Subtropical Gyre (2.6±1.6 ‰) compared with surface ocean DON d15N above ODZ (5.4±2.3 ‰) infer significant low-d15N nitrogen is added to the western South Pacific and oligotrophic South Pacific Subtropical Gyre, potentially from N2 fixation. Additionally, high DON d15N at ~180˚ was consistent with entrainment of subsurface NO3- into surface waters due to shallow bathymetry. Together, these observations suggest that DON production and consumption processes operate on timescales adequately fast to produce isotopic gradients across the South Pacific. Comparisons of surface ocean DON d15N with subsurface nitrate d15N constrain the locations and timescales of these processes. 
    more » « less
  4. Abstract

    The California Current System is a productive eastern boundary region off the coasts of Washington, Oregon, and California. There is strong seasonality to the region, with high levels of rainfall and river input to the coastal ocean during the winter season, and coastal and Ekman upwelling during the spring and summer. Iron (Fe) input to the coastal ocean during the winter months can be stored in the continental shelf mud belts and then be delivered to the surface ocean by upwelling in the spring and summer. There have been a number of studies providing strong evidence of Fe‐limitation of diatom growth occurring in regions of the California Current System off of California, and the occurrence of Fe‐limitation has been linked with narrow continental shelf mud belt width and low river input. We provide evidence for potential Fe‐limitation of diatoms off the southern coast of Oregon in July 2014, just off the shelf break near Cape Blanco in a region with moderate shelf width and river input. Since eastern boundary regions account for a disproportionally large amount of global primary production, this observation of potential Fe‐limitation in an unexpected near‐shore region of the California Current System has implications for global models of primary productivity. In order to re‐evaluate the factors impacting Fe availability, we utilize satellite imagery to compare with historical datasets, and show that unexpected levels of Fe can often be explained by eddies, plumes of upwelled water moving offshore, or lack of recent upwelling.

     
    more » « less
  5. Abstract. The ability to constrain the mechanisms that transport organiccarbon into the deep ocean is complicated by the multiple physical,chemical, and ecological processes that intersect to create, transform, andtransport particles in the ocean. In this paper we develop andparameterize a data-assimilative model of the multiple pathways of thebiological carbon pump (NEMUROBCP). The mechanistic model is designedto represent sinking particle flux, active transport by vertically migratingzooplankton, and passive transport by subduction and vertical mixing, whilealso explicitly representing multiple biological and chemical propertiesmeasured directly in the field (including nutrients, phytoplankton andzooplankton taxa, carbon dioxide and oxygen, nitrogen isotopes, and234Thorium). Using 30 different data types (including standing stockand rate measurements related to nutrients, phytoplankton, zooplankton, andnon-living organic matter) from Lagrangian experiments conducted on 11cruises from four ocean regions, we conduct an objective statisticalparameterization of the model and generate 1 million different potentialparameter sets that are used for ensemble model simulations. The modelsimulates in situ parameters that were assimilated (net primary productionand gravitational particle flux) and parameters that were withheld(234Thorium and nitrogen isotopes) with reasonable accuracy. Modelresults show that gravitational flux of sinking particles and verticalmixing of organic matter from the euphotic zone are more importantbiological pump pathways than active transport by vertically migratingzooplankton. However, these processes are regionally variable, with sinkingparticles most important in oligotrophic areas of the Gulf of Mexico andCalifornia Current, sinking particles and vertical mixing roughly equivalentin productive coastal upwelling regions and the subtropical front in theSouthern Ocean, and active transport an important contributor in the easterntropical Pacific. We further find that mortality at depth is an importantcomponent of active transport when mesozooplankton biomass is high, but itis negligible in regions with low mesozooplankton biomass. Our results alsohighlight the high degree of uncertainty, particularly amongstmesozooplankton functional groups, that is derived from uncertainty in modelparameters. Indeed, variability in BCP pathways between simulations for aspecific location using different parameter sets (all with approximatelyequal misfit relative to observations) is comparable to variability in BCPpathways between regions. We discuss the implications of these results forother data-assimilation approaches and for studies that rely on non-ensemblemodel outputs. 
    more » « less