skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Physical Obstacles Constrain Behavioral Parameter Space of Successful Localization in Honey Bee Swarms
Honey bees (Apis mellifera L.) localize the queen and aggregate into a swarm by forming a collective scenting network to directionally propagate volatile pheromone signals. Previous experiments show the robustness of this communication strategy in the presence of physical obstacles that partially block pheromone flow and the path to the queen. Specifically, there is a delay in the formation of the scenting network and aggregation compared to a simple environment without perturbations. To better understand the effect of obstacles beyond temporal dynamics, we use the experimental results as inspiration to explore how the behavioral parameter space of collective scenting responds to obstacle. We extend an agent-based model previously developed for a simple environment to account for the presence of physical obstacles. We study how individual agents with simple behavioral rules for scenting and following concentration gradients can give rise to collective localization and swarming. We show that the bees are capable of navigating the more complex environment with a physical obstacle to localize the queen and aggregate around her, but their range of behavioral parameters is more limited and less flexible as a result of the spatial density heterogeneity in the bees imposed by the obstacle.  more » « less
Award ID(s):
2014212
NSF-PAR ID:
10444259
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ALIFE 2022: The 2022 Conference on Artificial Life
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Honeybee swarms are a landmark example of collective behavior. To become a coherent swarm, bees locate their queen by tracking her pheromones. But how can distant individuals exploit these chemical signals, which decay rapidly in space and time? Here, we combine a behavioral assay with the machine vision detection of organism location and scenting (pheromone propagation via wing fanning) behavior to track the search and aggregation dynamics of the honeybee Apis mellifera L. We find that bees collectively create a scenting-mediated communication network by arranging in a specific spatial distribution where there is a characteristic distance between individuals and directional signaling away from the queen. To better understand such a flow-mediated directional communication strategy, we developed an agent-based model where bee agents obeying simple, local behavioral rules exist in a flow environment in which the chemical signals diffuse and decay. Our model serves as a guide to exploring how physical parameters affect the collective scenting behavior and shows that increased directional bias in scenting leads to a more efficient aggregation process that avoids local equilibrium configurations of isotropic (nondirectional and axisymmetric) communication, such as small bee clusters that persist throughout the simulation. Our results highlight an example of extended classical stigmergy: Rather than depositing static information in the environment, individual bees locally sense and globally manipulate the physical fields of chemical concentration and airflow. 
    more » « less
  2. In this work, we explore how the emergence of collective motion in a system of particles is influenced by the structure of their domain. Using the Vicsek model to generate flocking, we simulate two-dimensional systems that are confined based on varying obstacle arrangements. The presence of obstacles alters the topological structure of the domain where collective motion occurs, which, in turn, alters the scaling behavior. We evaluate these trends by considering the scaling exponent and critical noise threshold for the Vicsek model, as well as the associated diffusion properties of the system. We show that obstacles tend to inhibit collective motion by forcing particles to traverse the system based on curved trajectories that reflect the domain topology. Our results highlight key challenges related to the development of a more comprehensive understanding of geometric structure's influence on collective behavior. 
    more » « less
  3. null (Ed.)
    Abstract State-of-the-Art models of Root System Architecture (RSA) do not allow simulating root growth around rigid obstacles. Yet, the presence of obstacles can be highly disruptive to the root system. We grew wheat seedlings in sealed petri dishes without obstacle and in custom 3D-printed rhizoboxes containing obstacles. Time-lapse photography was used to reconstruct the wheat root morphology network. We used the reconstructed wheat root network without obstacle to calibrate an RSA model implemented in the R-SWMS software. The root network with obstacles allowed calibrating the parameters of a new function that models the influence of rigid obstacles on wheat root growth. Experimental results show that the presence of a rigid obstacle does not affect the growth rate of the wheat root axes, but that it does influence the root trajectory after the main axis has passed the obstacle. The growth recovery time, i.e. the time for the main root axis to recover its geotropism-driven growth, is proportional to the time during which the main axis grows along the obstacle. Qualitative and quantitative comparisons between experimental and numerical results show that the proposed model successfully simulates wheat RSA growth around obstacles. Our results suggest that wheat roots follow patterns that could inspire the design of adaptive engineering flow networks. 
    more » « less
  4. ABSTRACT Insects are remarkable flyers and capable of navigating through highly cluttered environments. We tracked the head and thorax of bumblebees freely flying in a tunnel containing vertically oriented obstacles to uncover the sensorimotor strategies used for obstacle detection and collision avoidance. Bumblebees presented all the characteristics of active vision during flight by stabilizing their head relative to the external environment and maintained close alignment between their gaze and flightpath. Head stabilization increased motion contrast of nearby features against the background to enable obstacle detection. As bees approached obstacles, they appeared to modulate avoidance responses based on the relative retinal expansion velocity (RREV) of obstacles and their maximum evasion acceleration was linearly related to RREVmax. Finally, bees prevented collisions through rapid roll manoeuvres implemented by their thorax. Overall, the combination of visuo-motor strategies of bumblebees highlights elegant solutions developed by insects for visually guided flight through cluttered environments. 
    more » « less
  5. null (Ed.)
    Bumble bee queens initiate nests solitarily and transition to living socially once they successfully rear their first cohort of offspring. Bumble bees are disproportionately important for early season pollination, and many populations are experiencing dramatic declines. In this system, the onset of the social stage is critical for nest survival, yet the mechanisms that facilitate this transition remain understudied. Further, the majority of conservation efforts target the social stage of the bumble bee life cycle and do not address the solitary founding stage. We experimentally manipulated the timing of worker emergence in young nests of bumble bee (Bombus impatiens) queens to determine whether and how queen fecundity and survival are impacted by the emergence of workers in the nest. We found that queens with workers added to the nest exhibit increased ovary activation, accelerated egg laying, elevated juvenile hormone (JH) titres and also lower mortality relative to solitary queens. We also show that JH is more strongly impacted by the social environment than associated with queen reproductive state, suggesting that this key regulator of insect reproduction has expanded its function in bumble bees to also influence social organization. We further demonstrate that these effects are independent of queen social history, suggesting that this underlying mechanism promoting queen fecundity is reversible and short lived. Synchronization between queen reproductive status and emergence of workers in the nest may ultimately increase the likelihood of early nesting success in social systems with solitary nest founding. Given that bumble bee workers regulate queen physiology as we have demonstrated, the timing of early worker emergence in the nest likely impacts queen fitness, colony developmental trajectories and ultimately nesting success. Collectively, our findings underline the importance of conservation interventions for bumble bees that support the early nesting period and facilitate the production and maintenance of workers in young nests 
    more » « less