Resistance to antibiotics is a serious and worsening threat to human health worldwide, and there is an urgent need to develop new antibiotics that can avert it. One possible solution is the development of compounds that possess multiple modes of action, requiring at least two mutations to acquire resistance. Compound SCH-79797 both avoids resistance and has two mechanisms of action: one inhibiting the folate pathway, and a second described as “membrane permeabilization”; however, the mechanism by which membranes from bacterial cells, but not the host, are disrupted has remained mysterious. The opening of the bacterial mechanosensitive channel of large conductance, MscL, which ordinarily serves the physiological role of osmotic emergency release valves gated by hypoosmotic shock, has been previously demonstrated to affect bacterial membrane permeabilization. MscL allows the rapid permeabilization of both ions and solutes through the opening of the largest known gated pore, which has a diameter of 30 Å. We found that SCH-79797 and IRS-16, a more potent derivative, directly bind to the MscL channel and produce membrane permeabilization as a result of its activation. These findings suggest that possessing or adding an MscL-activating component to an antibiotic compound could help to lower toxicity and evade antibiotic resistance.
more »
« less
Tight hydrophobic core and flexible helices yield MscL with a high tension gating threshold and a membrane area mechanical strain buffer
The mechanosensitive (MS) channel of large conductance, MscL, is the high-tension threshold osmolyte release valve that limits turgor pressure in bacterial cells in the event of drastic hypoosmotic shock. Despite MscL from Mycobacterium tuberculosis (TbMscL) being the first structurally characterized MS channel, its protective mechanism of activation at nearly-lytic tensions has not been fully understood. Here, we describe atomistic simulations of expansion and opening of wild-type (WT) TbMscL in comparison with five of its gain-of-function (GOF) mutants. We show that under far-field membrane tension applied to the edge of the periodic simulation cell, WT TbMscL expands into a funnel-like structure with trans-membrane helices bent by nearly 70°, but does not break its ‘hydrophobic seal’ within extended 20 μs simulations. GOF mutants carrying hydrophilic substitutions in the hydrophobic gate of increasing severity (A20N, V21A, V21N, V21T and V21D) also quickly transition into funnel-shaped conformations but subsequently fully open within 1–8 μs. This shows that solvation of the de-wetted (vapor-locked) constriction is the rate-limiting step in the gating of TbMscL preceded by area-buffering silent expansion. Pre-solvated gates in these GOF mutants reduce this transition barrier according to hydrophilicity and the most severe V21D eliminates it. We predict that the asymmetric shape-change of the periplasmic side of the channel during the silent expansion provides strain-buffering to the outer leaflet thus re-distributing the tension to the inner leaflet, where the gate resides.
more »
« less
- PAR ID:
- 10444327
- Date Published:
- Journal Name:
- Frontiers in Chemistry
- Volume:
- 11
- ISSN:
- 2296-2646
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Activation of SARS-CoV-2 Spike deploys its fusion peptide to a membrane of the host cell to infect it. NMR in solution demonstrates that this fusion peptide transforms from intrinsic disorder in solution into a wedge-shaped structure inserted in bilayered micelles. According to NOEs and proximity to a nitroxide spin label deep in the membrane mimic, the globular fold of three helices contrasts the open, extended conformations observed in compact prefusion states. In the hydrophobic, narrow end of the wedge, helices 1 and 2 contact the fatty acyl chains of phospholipids. 50 of the resulting paramagnetic NMR relaxation enhancements and 6 lipid-protein NOEs provided ambiguous distances as collective variables (colvars) to bias and guide MD simulations. Simulations in NAMD using the CHARMM36 forcefield included colvars for 130 medium- and long-range NOEs to maintain the equilibrium structure. In the gently NMR-biased simulations, the fusion peptide maintained its insertion of helices 1 and 2 within a single leaflet while helix 3 remained exposed. A cation occasionally visited the anionic side chains in the loop joining helices 2 and 3 or at the N-terminal end of helix 1. The unoccupied leaflet is thinned and distorted opposite the fusion peptide.The thinning could be related to the fusion peptide promoting formation of the hemi-fusion intermediate in the process of viral-cell fusion. Supported by NSF Rapid award 2030473.more » « less
-
In Silico Screen Identifies a New Family of Agonists for the Bacterial Mechanosensitive Channel MscLMscL is a highly conserved mechanosensitive channel found in the majority of bacterial species, including pathogens. It functions as a biological emergency release valve, jettisoning solutes from the cytoplasm upon acute hypoosmotic stress. It opens the largest known gated pore and has been heralded as an antibacterial target. Although there are no known endogenous ligands, small compounds have recently been shown to specifically bind to and open the channel, leading to decreased cell growth and viability. Their binding site is at the cytoplasmic/membrane and subunit interfaces of the protein, which has been recently been proposed to play an essential role in channel gating. Here, we have targeted this pocket using in silico screening, resulting in the discovery of a new family of compounds, distinct from other known MscL-specific agonists. Our findings extended the study of this functional region, the progression of MscL as a viable drug target, and demonstrated the power of in silico screening for identifying and improving the design of MscL agonists.more » « less
-
C-type inactivation is a time-dependent process observed in many K + channels whereby prolonged activation by an external stimulus leads to a reduction in ionic conduction. While C-type inactivation is thought to be a result of a constriction of the selectivity filter, the local dynamics of the process remain elusive. Here, we use molecular dynamics (MD) simulations of the KcsA channel to elucidate the nature of kinetically delayed activation/inactivation gating coupling. Microsecond-scale MD simulations based on the truncated form of the KcsA channel (C-terminal domain deleted) provide a first glimpse of the onset of C-type inactivation. We observe over multiple trajectories that the selectivity filter consistently undergoes a spontaneous and rapid (within 1–2 µs) transition to a constricted conformation when the intracellular activation gate is fully open, but remains in the conductive conformation when the activation gate is closed or partially open. Multidimensional umbrella sampling potential of mean force calculations and nonequilibrium voltage-driven simulations further confirm these observations. Electrophysiological measurements show that the truncated form of the KcsA channel inactivates faster and greater than full-length KcsA, which is consistent with truncated KcsA opening to a greater degree because of the absence of the C-terminal domain restraint. Together, these results imply that the observed kinetics underlying activation/inactivation gating reflect a rapid conductive-to-constricted transition of the selectivity filter that is allosterically controlled by the slow opening of the intracellular gate.more » « less
-
Abstract High‐speed video and electric field change data are used to describe the first 5 ms of a negative cloud‐to‐ground flash. These observations reveal an evolution in character of the luminosity and electric field change pulses as two branches of the leader separately transition from initial leader to propagating as a negative stepped leader (SL). For the first time reported, there is evidence of weak luminosity coincident with the initiating event, a weak bipolar pulse 60 μs prior to the first initial breakdown (IB) pulse. During the IB stage, the initial leader advances intermittently at intervals of 100–280 μs, in separate light bursts that are bright for a few 20‐μs frames and are time coincident with IB pulses. In the intervals between IB pulses, the initial leader is dim or invisible during the earliest 1.8 ms. Within 2 ms, the leader propagation begins transitioning to an early SL phase, in which the leader tip advances at more regular intervals of 40–80 μs during relatively dim and brief steps which are coincident with SL pulses having short duration, small amplitude, and typically unipolar waveform. These data indicate that when the entire initial leader length behind the lower end begins to remain illuminated between bursts, the propagation mode changes from IB bursts to SL steps, and the IB stage ends. The results support a hypothesis that the early initial leader development occurs in the absence of a continuously hot channel, thus the initial leader propagation is physically unlike the self‐propagating SL advance.more » « less
An official website of the United States government

