The molecular composition and architecture of polymeric DNA delivery reagents govern their transfection efficiency. One parameter that is understudied is the influence of polydispersity on transfection efficiency. Here we report the synthesis of two molecularly identical polymer series, but with different polydispersities (1.3 vs. 2.0) and quantify the effect polydispersity on transfection efficiency. The results show that the effect of polydispersity on transfection efficiency in cell culture is not predictable and is stochastic in nature. In general terms, polymers with high polydispersity mediated higher levels of transfection
Bulk heterojunctions (BHJs) based on semiconducting electron–donor polymer and electron–acceptor fullerene have been extensively investigated as potential photoactive layers for organic solar cells (OSCs). In the experimental studies, poly‐(3‐hexyl‐thiophene) (P3HT) polymers are hardly monodisperse as the synthesis of highly monodisperse polymer mixture is a near impossible task to achieve. However, the majority of the computational efforts on P3HT: phenyl‐C61‐butyric acid methyl ester (P3HT:PCBM)‐based OSCs, a monodisperse P3HT is usually considered. Here, results from coarse‐grained molecular dynamics simulations of solvent evaporation and thermal annealing process of the BHJ are shared describing the effect of variability in molecular weight (also known as polydispersity) on the morphology of the active layer. Results affirm that polydispersity is beneficial for charge separation as the interfacial area is observed to increase with higher dispersity. Calculations of percolation and orientation tensors, on the other hand, reveal that a certain polydispersity index ranging between 1.05 and 1.10 should be maintained for optimal charge transport. Most importantly, these results point out that the consideration of polydispersity should be considered in computational studies of polymer‐based OSCs. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys.
- Award ID(s):
- 1662435
- NSF-PAR ID:
- 10461223
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Journal of Polymer Science Part B: Polymer Physics
- Volume:
- 57
- Issue:
- 14
- ISSN:
- 0887-6266
- Page Range / eLocation ID:
- p. 895-903
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT in vitro compared to low polydispersity polymers with the same side chain distribution and composition. However, at higher molecular weights, the effect of polydispersity was polymer specific, with enhanced transfection efficiency in some cases, but negligible in others. An interesting outcome is that the higher polydispersity polymers generally enhanced the stability of polymer:DNA complexes and this enhancement generally correlated with enhanced transfection efficiency. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci.2018 ,135 , 45965. -
ABSTRACT The microstructure dependence of carrier mobility and recombination rates of neat films of poly 3‐hexylthyophene (P3HT) were determined for a range of materials of weight‐average molecular weights,
M w, ranging from 14 to 331 kDa. This variation has previously been shown to modify the polymer microstructure, with low molecular weights forming a one‐phase, paraffinic‐like structure comprised of chain‐extended crystallites, and higher molecular weights forming a semicrystalline structure with crystalline domains being embedded in an amorphous matrix. Using Charge Extraction by Linearly Increasing Voltage (CELIV), we show here that the carrier mobility in P3HT devices peaks for materials ofM w = 48 kDa, and that the recombination rate decreases monotonically with increasing molecular weight. This trend is likely due to the development of a semicrystalline, two‐phase structure with increasingM w, which allows for the spatial separation of holes and electrons into the amorphous and crystalline regions, respectively. This separation leads to decreased recombination. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys.2018 ,56 , 31–35 -
Abstract Conjugated polymer‐based block copolymers (CP‐BCPs) are an unexplored class of materials for organic thermoelectrics. Herein, the authors report on the electronic conductivity (σ) and Seebeck coefficient (α) of a newly synthesized CP‐BCP, poly(3‐hexylthiophene)‐
block ‐poly (oligo‐oxyethylene methacrylate) (P3HT‐b ‐POEM), upon solution co‐processing with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), and subsequently vapor‐doping with a molecular dopant, 2,3,5,6‐tetrafluoro‐7,7,8,8‐tetracyanoquinodimethane (F4TCNQ). It is found that the addition of the hydrophilic block POEM greatly enhances the processability of P3HT, enabling homogeneous solution‐mixing with LiTFSI. Notably, interactions between P3HT‐b ‐POEM with ionic species significantly improve molecular order and unexpectedly cause electrical oxidizing doping of P3HT block both in solution and solid‐states, a phenomenon that has not been previously observed in Li‐salt containing P3HT. Vapor doping of P3HT‐b ‐POEM‐LiTFSI thin films with F4TCNQ further enhances σ and yields a thermoelectric power factorPF = α2σ of 13.0µ W m−1 K−2, which is more than 20 times higher than salt‐free P3HT‐b ‐POEM sample. Through modeling thermoelectric behaviors of P3HT‐b‐ POEM with the Kang‐Snyder transport model, the improvement inPF is attributed to higher electronic charge mobility originating from the enhanced molecular ordering of P3HT. The results demonstrate that solution co‐processing CP‐BCPs with a salt is a powerful method to control structure and performance of organic thermoelectric materials. -
ABSTRACT This article reports a chain‐growth coupling polymerization of AB difunctional monomer via copper‐catalyzed azide–alkyne cycloaddition (CuAAC) reaction for synthesis of star polymers. Unlike our previously reported CuAAC polymerization of AB
n (n ≥ 2) monomers that spontaneously demonstrated a chain‐growth mechanism in synthesis of hyperbranched polymer, the homopolymerization of AB monomer showed a common but less desired step‐growth mechanism as the triazole groups aligned in a linear chain could not effectively confine the Cu catalyst in the polymer species. In contrast, the use of polytriazole‐based core molecules that contained multiple azido groups successfully switched the polymerization of AB monomers into chain‐growth mechanism and produced 3‐arm star polymers and multi‐arm hyperstar polymers with linear increase of polymer molecular weight with conversion and narrow molecular weight distribution, for example,M w/M n ~ 1.05. When acid‐degradable hyperbranched polymeric core was used, the obtained hyperstar polymers could be easily degraded under acidic environment, producing linear degraded arms with defined polydispersity. © 2019 Wiley Periodicals, Inc. J. Polym. Sci.2020 ,58 , 84–90 -
ABSTRACT Block copolymers with donor and acceptor conjugated polymer blocks provide an approach to dictating the donor–accepter interfacial structure and understanding its relationship to charge separation and photovoltaic performance. We report the preparation of a series of donor‐linker‐acceptor block copolymers with poly(3‐hexylthiophene) (P3HT) donor blocks, poly((9,9‐dioctylfluorene)‐2,7‐diyl‐alt‐[4,7‐bis(thiophen‐5‐yl)‐2,1,3‐benzothiadiazole]‐2′,2″‐diyl) (PFTBT) acceptor blocks, and varying lengths of oligo‐ethylene glycol (OEG) chains as the linkers. Morphological analysis shows that the linkers increase polymer crystallinity while a combination of optical and photovoltaic measurements shows that the insertion of a flexible spacer reduces fluorescence quenching and photovoltaic efficiencies of solution processed photovoltaic devices. Density functional theory (DFT) simulations indicate that the linking groups reduce both charge separation and recombination rates, and block copolymers with flexible linkers will likely rotate to assume a nonplanar orientation, resulting in a significant loss of overlap at the donor–linker–acceptor interface. This work provides a systematic study of the role of linker length on the photovoltaic performance of donor–linker–acceptor block copolymers and indicates that linkers should be designed to control both the electronic properties and relative orientations of conjugated polymers at the interface. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys.
2018 ,56 , 1135–1143