skip to main content


Title: Characterization of the optical and electronic properties of chalcogenide hybrid inorganic/organic polymer thin films

Chalcogenide hybrid inorganic/organic polymers (CHIPs) are a new class of optical polymeric materials for imaging and photonic applications due to their high refractive indices and high optical transmission at visible and infrared wavelengths. In this study, we characterize these polymers to study the refractive index and delve into the electronic properties by way of measurements of their dielectric constants. Ellipsometry is used to determine the refractive indices for wavelengths from 500 nm to 12 µm, while we use capacitance measurements on thin film capacitors with a range of areas to find the dielectric constant. The results are in line with expectations based on the sulfur composition of the polymers-indices range from 1.7 to 1.85, and dielectric constants range from 2.6 to 3. With these measurements, these sulfur polymer materials are established to be good candidates for optical and photonic applications, particularly with respect to telecommunications. The dielectric constants suggest that applications such as electro-optic devices and capacitors may also be viable.

 
more » « less
Award ID(s):
2118578 1940942
PAR ID:
10459758
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optical Materials Express
Volume:
13
Issue:
10
ISSN:
2159-3930
Format(s):
Medium: X Size: Article No. 2737
Size(s):
Article No. 2737
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Optical polymer‐based integrated photonic devices are gaining interest for applications in optical packaging, biosensing, and augmented/virtual reality (AR/VR). The low refractive index of conventional organic polymers has been a barrier to realizing dense, low footprint photonic devices. The fabrication and characterization of integrated photonic devices using a new class of high refractive index polymers, chalcogenide hybrid inorganic/organic polymers (CHIPs), which possess high refractive indices and lower optical losses compared to traditional hydrocarbon‐based polymers, are reported. These optical polymers are derived from elemental sulfur via the inverse vulcanization process, which allows for inexpensive monomers to be used for these materials. A facile fabrication strategy using CHIPs via lithography is described for single‐mode optical waveguides, Y junction splitters, multimode interferometers (MMIs), and high Q factor ring resonators, along with device characterization. Furthermore, propagation losses of 0.4 dB cm−1near 1550 nm wavelength, which is the lowest measured loss in non‐fluorinated optical polymer waveguides, coupled with the benefits of low cost materials and manufacturing are reported. Ring resonators with Q factor on the order of 6 × 104and cavity finesse of 45, which are some of the highest values reported for optical polymer‐based ring resonators, are also reported.

     
    more » « less
  2. Abstract With chemical stability under high temperatures, dielectric materials can be idealized thermal emitters for different energy applications. However, dielectric materials do not support surface waves at near-infrared ranges for longer-distance thermal photon tunneling, which limits their applications in near-field thermal radiation. It is demonstrated in this study that thermal field amplification at near-infrared wavelengths at dielectric surfaces could be achieved through asymmetric Fabry–Perot resonance with anti-reflection coatings or 1D photonic crystal type structures. ⩾100 nm near-infrared thermal photon tunneling can be achieved when these thin film structures are added to the emitter and the collector surfaces. Among these two thin film structures, 1D photonic crystal type periodic structures constructed with the same high refractive index material as the emitter/collector material allow near-field thermal photon tunneling at large parallel wavenumbers. Moreover, the field amplification can be increased by adding more 1D photonic crystal layers to achieve even longer distances near field thermal photon tunneling. 
    more » « less
  3. Optical dielectric constants are critical to modeling the electronic and optical properties of materials. Silver, as a noble metal with low loss, has been extensively investigated. The recently developed epitaxial growths of single crystalline Ag on dielectric substrates have prompted efforts to characterize their intrinsic optical dielectric function. In this paper, we report spectral ellipsometry measurements and analysis of a thick, epitaxially-grown, single-crystalline Ag film. We focus on the range of 0.18 – 1.0 eV or 1.24 – 7 µm, an energy and wavelength range that has not been examined previously using epitaxial films. We compare the extracted dielectric constants and the predicted optical performances with previous measurements. The loss is appreciably lower than the widely quoted Palik’s optical constants (i.e., up to a factor of 2) in the infrared frequency range. The improved knowledge of fundamental optical properties of the high-quality epitaxial Ag film will have a broad impact on simulations and practical applications based on Ag in the long wavelength range.

     
    more » « less
  4. Two dimensional (2D) materials such as graphene and transition metal dichalcogenides (TMDs) are promising for optical modulation, detection, and light emission since their material properties can be tuned on-demand via electrostatic doping1–21. The optical properties of TMDs have been shown to change drastically with doping in the wavelength range near the excitonic resonances22–26. However, little is known about the effect of doping on the optical properties of TMDs away from these resonances, where the material is transparent and therefore could be leveraged in photonic circuits. Here, we probe the electro-optic response of monolayer TMDs at near infrared (NIR) wavelengths (i.e. deep in the transparency regime), by integrating them on silicon nitride (SiN) photonic structures to induce strong light -matter interaction with the monolayer. We dope the monolayer to carrier densities of (7.2 ± 0.8) × 1013 cm-2, by electrically gating the TMD using an ionic liquid [P14+] [FAP-]. We show strong electro-refractive response in monolayer tungsten disulphide (WS2) at NIR wavelengths by measuring a large change in the real part of refractive index ∆n = 0.53, with only a minimal change in the imaginary part ∆k = 0.004. We demonstrate photonic devices based on electrostatically gated SiN-WS2 phase modulator with high efficiency ( ) of 0.8 V · cm. We show that the induced phase change relative to the change in absorption (i.e. ∆n/∆k) is approximately 125, that is significantly higher than the ones achieved in 2D materials at different spectral ranges and in bulk materials, commonly employed for silicon photonic modulators such as Si and III-V on Si, while accompanied by negligible insertion loss. Efficient phase modulators are critical for enabling large-scale photonic systems for applications such as Light Detection and Ranging (LIDAR), phased arrays, optical switching, coherent optical communication and quantum and optical neural networks27–30. 
    more » « less
  5. Infrared refractive indices of organic materials are typically resolved through IR ellipsometry. This technique takes advantage of optical interference effects to solve the optical constants. These are the same effects that complicate the analysis of coherent spectroscopy experiments on thin films. Vibrational sum frequency generation is an interface-specific coherent spectroscopy that requires spectral modeling to account for optical interference effects to uncover interfacial molecular responses. Here, we explore the possibility of leveraging incident beam geometries and sample thicknesses to simultaneously obtain the molecular responses and refractive indices. Globally fitting a higher number of spectra with a single set of refractive indices increases the fidelity of the fitted parameters. Finally, we test our method on samples with a range of thicknesses and compare the results to those obtained by IR ellipsometry.

     
    more » « less