skip to main content


Title: Molecular Vibrational Polaritons Towards Quantum Technologies
Abstract

Molecular vibrational polaritons (MVPs)—a hybrid molecular‐photon quasiparticle—and the development of a proof‐of‐principle quantum technology platform are discussed to simulate coherence transfer, for use at room temperature. It is shown that MVPs can form qubits, coherence, and have nonlinear interactions, all at room temperature. Some new insights, such as polaritonic nonlinearity dependence on macroscopic properties including cavity thickness and molecular concentrations are also uncovered. It is hoped that these advances can stimulate more research in developing this system into a quantum technology platform free from the constraints imposed by the requirement of cryogenic conditions.

 
more » « less
Award ID(s):
1848215
PAR ID:
10444483
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Quantum Technologies
Volume:
5
Issue:
8
ISSN:
2511-9044
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Coherence delocalization has been investigated on a coupled‐cavity molecular polariton platform in time, frequency, and spatial domains, enabled by ultrafast two‐dimensional infrared hyperspectral imaging. Unidirectional coherence delocalization (coherence prepared in one cavity transferred to another cavity) has been observed in frequency and real space. This directionality is enabled by the dissipation of delocalized photon from high‐energy to low‐energy modes, described by Lindblad dynamics. Further experiments show that when coherences are directly prepared between polaritons from different cavities, only energetically nearby polaritons can form coherences that survive the long‐range environmental fluctuation. Together with the Lindblad dynamics, this result implies that coherences delocalize through a one‐step mechanism where photons transfer from one cavity to another, shedding light to coherence evolution in natural and artificial quantum systems. This new optical platform based on molecular vibrational polariton thus demonstrates a way of combining photon and molecular modes to simulate coherence dynamics in the infrared regime.

     
    more » « less
  2. Establishing the fundamental chemical principles that govern molecular electronic quantum decoherence has remained an outstanding challenge. Fundamental questions such as how solvent and intramolecular vibrations or chemical functionalization contribute to the decoherence remain unanswered and are beyond the reach of state-of-the-art theoretical and experimental approaches. Here we address this challenge by developing a strategy to isolate electronic decoherence pathways for molecular chromophores immersed in condensed phase environments that enables elucidating how electronic quantum coherence is lost. For this, we first identify resonance Raman spectroscopy as a general experimental method to reconstruct molecular spectral densities with full chemical complexity at room temperature, in solvent, and for fluorescent and non-fluorescent molecules. We then show how to quantitatively capture the decoherence dynamics from the spectral density and identify decoherence pathways by decomposing the overall coherence loss into contributions due to individual molecular vibrations and solvent modes. We illustrate the utility of the strategy by analyzing the electronic decoherence pathways of the DNA base thymine in water. Its electronic coherences decay in30 fs. The early-time decoherence is determined by intramolecular vibrations while the overall decay by solvent. Chemical substitution of thymine modulates the decoherence with hydrogen-bond interactions of the thymine ring with water leading to the fastest decoherence. Increasing temperature leads to faster decoherence as it enhances the importance of solvent contributions but leaves the early-time decoherence dynamics intact. The developed strategy opens key opportunities to establish the connection between molecular structure and quantum decoherence as needed to develop chemical strategies to rationally modulate it.

     
    more » « less
  3. Abstract

    Hexagonal boron nitride (hBN) has emerged as a promising ultrathin host of single photon emitters (SPEs) with favorable quantum properties at room temperature, making it a highly desirable element for integrated quantum photonic networks. One major challenge of using these SPEs in such applications is their low quantum efficiency. Recent studies have reported an improvement in quantum efficiency by up to two orders of magnitude when integrating an ensemble of emitters such as boron vacancy defects in multilayered hBN flakes embedded within metallic nanocavities. However, these experiments have not been extended to SPEs and are mainly focused on multiphoton effects. Here, the quantum single‐photon properties of hybrid nanophotonic structures composed of SPEs created in ultrathin hBN flakes coupled with plasmonic silver nanocubes (SNCs) are studied. The authors demonstrate 200% plasmonic enhancement of the SPE properties, manifested by a strong increase in the SPE fluorescence. Such enhancement is explained by rigorous numerical simulations where the hBN flake is in direct contact with the SNCs that cause the plasmonic effects. The presented strong and fast single photon emission obtained at room temperature with a compact hybrid nanophotonic platform can be very useful to various emerging applications in quantum optical communications and computing.

     
    more » « less
  4. Decoherence limits the physical realization of qubits, and its mitigation is critical for the development of quantum science and technology. We construct a robust qubit embedded in a decoherence-protected subspace, obtained by applying microwave dressing to a clock transition of the ground-state electron spin of a silicon carbide divacancy defect. The qubit is universally protected from magnetic, electric, and temperature fluctuations, which account for nearly all relevant decoherence channels in the solid state. This culminates in an increase of the qubit’s inhomogeneous dephasing time by more than four orders of magnitude (to >22 milliseconds), while its Hahn-echo coherence time approaches 64 milliseconds. Requiring few key platform-independent components, this result suggests that substantial coherence improvements can be achieved in a wide selection of quantum architectures.

     
    more » « less
  5. The energetic disorder induced by fluctuating liquid environments acts in opposition to the precise control required for coherence-based sensing. Overcoming fluctuations requires a protected quantum subspace that only weakly interacts with the local environment. We report a ytterbium complex that exhibited an ultranarrow absorption linewidth in solution at room temperature with a full width at half maximum of 0.625 milli–electron volts. Using spectral hole burning, we measured an even narrower linewidth of 410 pico–electron volts at 77 kelvin. Narrow linewidths allowed low-field magnetic circular dichroism at room temperature, used to sense Earth-scale magnetic fields. These results demonstrated that ligand protection in lanthanide complexes could substantially diminish electronic state fluctuations. We have termed this system an “atomlike molecular sensor” (ALMS) and proposed approaches to improve its performance.

     
    more » « less