skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 10:00 PM ET on Friday, December 8 until 2:00 AM ET on Saturday, December 9 due to maintenance. We apologize for the inconvenience.

Title: Molecular Vibrational Polaritons Towards Quantum Technologies

Molecular vibrational polaritons (MVPs)—a hybrid molecular‐photon quasiparticle—and the development of a proof‐of‐principle quantum technology platform are discussed to simulate coherence transfer, for use at room temperature. It is shown that MVPs can form qubits, coherence, and have nonlinear interactions, all at room temperature. Some new insights, such as polaritonic nonlinearity dependence on macroscopic properties including cavity thickness and molecular concentrations are also uncovered. It is hoped that these advances can stimulate more research in developing this system into a quantum technology platform free from the constraints imposed by the requirement of cryogenic conditions.

more » « less
Award ID(s):
1848215 2101988
Author(s) / Creator(s):
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Quantum Technologies
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Coherent control and manipulation of quantum degrees of freedom such as spins forms the basis of emerging quantum technologies. In this context, the robust valley degree of freedom and the associated valley pseudospin found in two‐dimensional transition metal dichalcogenides is a highly attractive platform. Valley polarization and coherent superposition of valley states have been observed in these systems even up to room temperature. Control of valley coherence is an important building block for the implementation of valley qubit. Large magnetic fields or high‐power lasers have been used in the past to demonstrate the control (initialization and rotation) of the valley coherent states. Here, the control of layer–valley coherence via strong coupling of valley excitons in bilayer WS2to microcavity photons is demonstrated by exploiting the pseudomagnetic field arising in optical cavities owing to the transverse electric–transverse magnetic (TE–TM)mode splitting. The use of photonic structures to generate pseudomagnetic fields which can be used to manipulate exciton‐polaritons presents an attractive approach to control optical responses without the need for large magnets or high‐intensity optical pump powers.

    more » « less
  2. Decoherence limits the physical realization of qubits, and its mitigation is critical for the development of quantum science and technology. We construct a robust qubit embedded in a decoherence-protected subspace, obtained by applying microwave dressing to a clock transition of the ground-state electron spin of a silicon carbide divacancy defect. The qubit is universally protected from magnetic, electric, and temperature fluctuations, which account for nearly all relevant decoherence channels in the solid state. This culminates in an increase of the qubit’s inhomogeneous dephasing time by more than four orders of magnitude (to >22 milliseconds), while its Hahn-echo coherence time approaches 64 milliseconds. Requiring few key platform-independent components, this result suggests that substantial coherence improvements can be achieved in a wide selection of quantum architectures.

    more » « less
  3. Abstract

    Coherence delocalization has been investigated on a coupled‐cavity molecular polariton platform in time, frequency, and spatial domains, enabled by ultrafast two‐dimensional infrared hyperspectral imaging. Unidirectional coherence delocalization (coherence prepared in one cavity transferred to another cavity) has been observed in frequency and real space. This directionality is enabled by the dissipation of delocalized photon from high‐energy to low‐energy modes, described by Lindblad dynamics. Further experiments show that when coherences are directly prepared between polaritons from different cavities, only energetically nearby polaritons can form coherences that survive the long‐range environmental fluctuation. Together with the Lindblad dynamics, this result implies that coherences delocalize through a one‐step mechanism where photons transfer from one cavity to another, shedding light to coherence evolution in natural and artificial quantum systems. This new optical platform based on molecular vibrational polariton thus demonstrates a way of combining photon and molecular modes to simulate coherence dynamics in the infrared regime.

    more » « less
  4. Abstract

    Thanks to the unique molecular fingerprints in the mid-infrared spectral region, absorption spectroscopy in this regime has attracted widespread attention in recent years. Contrary to commercially available infrared spectrometers, which are limited by being bulky and cost-intensive, laboratory-on-chip infrared spectrometers can offer sensor advancements including raw sensing performance in addition to utilization such as enhanced portability. Several platforms have been proposed in the past for on-chip ethanol detection. However, selective sensing with high sensitivity at room temperature has remained a challenge. Here, we experimentally demonstrate an on-chip ethyl alcohol sensor based on a holey photonic crystal waveguide on silicon on insulator-based photonics sensing platform offering an enhanced photoabsorption thus improving sensitivity. This is achieved by designing and engineering an optical slow-light mode with a high group-index ofng = 73 and a strong localization of the modal power in analyte, enabled by the photonic crystal waveguide structure. This approach includes a codesign paradigm that uniquely features an increased effective path length traversed by the guided wave through the to-be-sensed gas analyte. This PIC-based lab-on-chip sensor is exemplary, spectrally designed to operate at the center wavelength of 3.4 μm to match the peak absorbance for ethanol. However, the slow-light enhancement concept is universal offering to cover a wide design-window and spectral ranges towards sensing a plurality of gas species. Using the holey photonic crystal waveguide, we demonstrate the capability of achieving parts per billion levels of gas detection precision. High sensitivity combined with tailorable spectral range along with a compact form-factor enables a new class of portable photonic sensor platforms when integrated with quantum cascade laser and detectors.

    more » « less
  5. Abstract

    A double-edged sword in two-dimensional material science and technology is optically forbidden dark exciton. On the one hand, it is fascinating for condensed matter physics, quantum information processing, and optoelectronics due to its long lifetime. On the other hand, it is notorious for being optically inaccessible from both excitation and detection standpoints. Here, we provide an efficient and low-loss solution to the dilemma by reintroducing photonics bound states in the continuum (BICs) to manipulate dark excitons in the momentum space. In a monolayer tungsten diselenide under normal incidence, we demonstrated a giant enhancement (~1400) for dark excitons enabled by transverse magnetic BICs with intrinsic out-of-plane electric fields. By further employing widely tunable Friedrich-Wintgen BICs, we demonstrated highly directional emission from the dark excitons with a divergence angle of merely 7°. We found that the directional emission is coherent at room temperature, unambiguously shown in polarization analyses and interference measurements. Therefore, the BICs reintroduced as a momentum-space photonic environment could be an intriguing platform to reshape and redefine light-matter interactions in nearby quantum materials, such as low-dimensional materials, otherwise challenging or even impossible to achieve.

    more » « less