skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Arrival of New Great Salinity Anomaly Weakens Convection in the Irminger Sea
Abstract The Subpolar North Atlantic is prone to recurrent extreme freshening events called Great Salinity Anomalies (GSAs). Here, we combine hydrographic ocean analyses and moored observations to document the arrival, spreading, and impacts of the most recent GSA in the Irminger Sea. This GSA is associated with a rapid freshening of the upper Irminger Sea between 2015 and 2020, culminating in annually averaged salinities as low as the freshest years of the 1990s and possibly since 1960. Upon the GSA propagation into the Irminger Sea over the Reykjanes Ridge, the boundary currents rapidly advected its signal around the basin within months while fresher waters slowly spread and accumulated into the interior. The anomalies in the interior freshened waters produced by deep convection during the 2017–2018 winter and actively contributed to the suppression of deep convection in the following two winters.  more » « less
Award ID(s):
2038481 1948482 1756272
PAR ID:
10444568
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
49
Issue:
11
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Transformation of light to dense waters by atmospheric cooling is key to the Atlantic Meridional Overturning Circulation in the Subpolar Gyre. Convection in the center of the Irminger Gyre contributes to the formation of the densest waters east of Greenland. We present a 19‐year (2002–2020) weekly time series of hydrography and convection in the central Irminger Sea based on (bi‐)daily mooring profiles supplemented with Argo profiles. A 70‐year annual time series of shipboard hydrography shows that this mooring period is representative of longer‐term variability. The depth of convection varies strongly from winter to winter (288–1,500 dbar), with a mean March mixed layer depth (MLD) of 470 dbar and a mean maximum density reached of 27.70 ± 0.05 kg m−3. The densification of the water column by local convection directly impacts the sea surface height in the center of the Irminger Gyre and thus large‐scale circulation patterns. Both the observations and a Price‐Weller‐Pinkel mixed layer model analysis show that the main cause of interannual variability in MLD is the strength of the winter atmospheric surface forcing. Its role is three times as important as that of the strength of the maximum stratification in the preceding summer. Strong stratification as a result of a fresh surface anomaly similar to the one observed in 2010 can weaken convection by approximately 170 m on average, but changes in surface forcing will need to be taken into account as well when considering the evolution of Irminger Sea convection under climate change. 
    more » « less
  2. In the 2010s, a large freshening event similar to past Great Salinity Anomalies occurred in the Iceland Basin that has since propagated into the Irminger Sea. The source waters of this fresh anomaly were hypothesized to have come from an eastward diversion of the Labrador Current, a finding that has since been supported by recent modeling studies. In this study, we investigate the pathways of the freshwater anomaly using a purely observational approach: particle tracking using satellite altimetry-derived surface velocity fields. Particle trajectories originating in the Labrador Current and integrated forward in time entered the Iceland Basin during the freshening event at nearly twice the frequency observed prior to 2009, suggesting an increased presence of Labrador Current-origin water in the Iceland Basin and Rockall Trough during the freshening. We observe a distinct regime change in 2009, similar to the timing found in the previous modeling papers. These spatial shifts were accompanied by faster transit times along the pathways which led to along-stream convergence and more particles arriving to the eastern subpolar gyre. These findings support the hypothesis that a diversion of relatively fresh Labrador Current waters eastward from the Grand Banks can explain the unprecedented freshening in the Iceland Basin. 
    more » « less
  3. Abstract Because new observations have revealed that the Labrador Sea is not the primary source for waters in the lower limb of the Atlantic Meridional Overturning Circulation (AMOC) during the Overturning in the Subpolar North Atlantic Programme (OSNAP) period, it seems timely to re‐examine the traditional interpretation of pathways and property variability for the AMOC lower limb from the subpolar gyre to 26.5°N. In order to better understand these connections, Lagrangian experiments were conducted within an eddy‐rich ocean model to track upper North Atlantic Deep Water (uNADW), defined by density, between the OSNAP line and 26.5°N as well as within the Labrador Sea. The experiments reveal that 77% of uNADW at 26.5°N is directly advected from the OSNAP West section along the boundary current and interior pathways west of the Mid‐Atlantic Ridge. More precisely, the Labrador Sea is a main gateway for uNADW sourced from the Irminger Sea, while particles connecting OSNAP East to 26.5°N are exclusively advected from the Iceland Basin and Rockall Trough along the eastern flank of the Mid‐Atlantic Ridge. Although the pathways between OSNAP West and 26.5°N are only associated with a net formation of 1.1 Sv into the uNADW layer, they show large density changes within the layer. Similarly, as the particles transit through the Labrador Sea, they undergo substantial freshening and cooling that contributes to further densification within the uNADW layer. 
    more » « less
  4. The Overturning in the Subpolar North Atlantic Program (OSNAP) was initiated in the spring of 2010 through a collaborative effort involving the USA, the UK, Germany, the Netherlands and Canada. A key feature of OSNAP is a trans-basin observing system deployed in the summer of 2014 for the continuous measure of volume, heat and freshwater fluxes in the subpolar North Atlantic. This review focuses on advancements made possible by the collective OSNAP observations. Chief among those advancements is the quantification of the dominant role of the eastern subpolar North Atlantic in the production of dense waters that reside in the lower limb of the overturning: the Irminger and Iceland basins contributed approximately three times as much dense water compared with the Labrador Sea over the observational period. Other advancements include elucidation of the relationship between convective activity in the basin interior and boundary current anomalies; the spread of overflow waters in the subpolar region; the seasonality of the meridional volume, heat and freshwater fluxes; and the challenges involved in designing a simpler, less costly observing system. Collectively, OSNAP measurements are laying a framework on which to assess the overturning circulation's vulnerability to continued warming and freshening as climate change continues apace. This article is part of a discussion meeting issue ‘Atlantic overturning: new observations and challenges’. 
    more » « less
  5. Abstract Increased freshwater input to the Subpolar North Atlantic from Greenland ice melt and the Arctic could strengthen stratification in deep convection regions and impact the overturning circulation. However, freshwater pathways from the east Greenland shelf to deep convection regions are not fully understood. We investigate the role of strong wind events at Cape Farewell in driving surface freshwaters from the East Greenland Current to the Irminger Sea. Using a high‐resolution model and an atmospheric reanalysis, we identify strong wind events and investigate their impact on freshwater export. Westerly tip jets are associated with the strongest and deepest freshwater export across the shelfbreak, with a mean of 37.5 mSv of freshwater in the first 100 m (with reference salinity 34.9). These wind events tilt isohalines and extend the front offshore, especially over Eirik Ridge. Moderate westerly events are associated with weaker export across the shelfbreak (mean of 15.9 mSv) but overall contribute to more freshwater export throughout the year, including in summer, when the shelf is particularly fresh. Particle tracking shows that half of the surface waters crossing the shelfbreak during tip jet events are exported away from the shelf, either entering the Irminger Gyre, or being driven over Eirik Ridge. During strong westerly wind events, sea ice detaches from the coast and veers toward the Irminger Sea, but the contribution of sea ice to freshwater export at the shelfbreak is minimal compared to liquid freshwater export due to limited sea ice cover at Cape Farewell. 
    more » « less