Abstract We present the first numerical simulations that track the evolution of a black hole–neutron star (BH–NS) merger from premerger tor≳ 1011cm. The disk that forms after a merger of mass ratioq= 2 ejects massive disk winds (3–5 × 10−2M⊙). We introduce various postmerger magnetic configurations and find that initial poloidal fields lead to jet launching shortly after the merger. The jet maintains a constant power due to the constancy of the large-scale BH magnetic flux until the disk becomes magnetically arrested (MAD), where the jet power falls off asLj∼t−2. All jets inevitably exhibit either excessive luminosity due to rapid MAD activation when the accretion rate is high or excessive duration due to delayed MAD activation compared to typical short gamma-ray bursts (sGRBs). This provides a natural explanation for long sGRBs such as GRB 211211A but also raises a fundamental challenge to our understanding of jet formation in binary mergers. One possible implication is the necessity of higher binary mass ratios or moderate BH spins to launch typical sGRB jets. For postmerger disks with a toroidal magnetic field, dynamo processes delay jet launching such that the jets break out of the disk winds after several seconds. We show for the first time that sGRB jets with initial magnetizationσ0> 100 retain significant magnetization (σ≫ 1) atr> 1010cm, emphasizing the importance of magnetic processes in the prompt emission. The jet–wind interaction leads to a power-law angular energy distribution by inflating an energetic cocoon whose emission is studied in a companion paper.
more »
« less
Striped Jets in Post–Neutron Star Merger Systems
Abstract Models invoking magnetic reconnection as the particle acceleration mechanism within relativistic jets often adopt a gradual energy dissipation profile within the jet. However, such a profile has yet to be reproduced in first-principles simulations. Here we perform a suite of 3D general relativistic magnetohydrodynamic simulations of post–neutron star merger disks with an initially purely toroidal magnetic field. We explore the variations in both the microphysics (e.g., nuclear recombination, neutrino emission) and system parameters (e.g, disk mass). In all of our simulations, we find the formation of magnetically striped jets. The stripes result from the reversals in the poloidal magnetic flux polarity generated in the accretion disk. The simulations display large variations in the distributions of stripe duration,τ, and power, 〈PΦ〉. We find that more massive disks produce more powerful stripes, the most powerful of which reaches 〈PΦ〉 ∼ 1049erg s−1atτ∼ 20 ms. The power and variability that result from the magnetic reconnection of the stripes agree with those inferred in short-duration gamma-ray bursts. We find that the dissipation profile of the cumulative energy is roughly a power law in both radial distance,z, andτ, with a slope in the range of ∼1.7–3; more massive disks display larger slopes.
more »
« less
- PAR ID:
- 10444600
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 954
- Issue:
- 1
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 40
- Size(s):
- Article No. 40
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Multiwavelength observations suggest that the accretion disk in the hard and intermediate states of X-ray binaries (XRBs) and active galactic nucleus transitions from a cold, thin disk at large distances into a hot, thick flow close to the black hole (BH). However, the formation, structure, and dynamics of such truncated disks are poorly constrained due to the complexity of the thermodynamic, magnetic, and radiative processes involved. We present the first radiation-transport two-temperature general relativistic magnetohydrodynamic (GRMHD) simulations of truncated disks radiating at ∼35% of the Eddington luminosity with and without large-scale poloidal magnetic flux. We demonstrate that when a geometrically thin accretion disk is threaded by large-scale net poloidal magnetic flux, it self-consistently transitions at small radii into a two-phase medium of cold gas clumps floating through a hot, magnetically dominated corona. This transition occurs at a well-defined truncation radius determined by the distance out to which the disk is saturated with magnetic flux. The average ion and electron temperatures in the semiopaque corona reach, respectively,Ti≳ 1010K andTe≳ 5 × 108K. The system produces radiation, powerful collimated jets, and broader winds at the total energy efficiency exceeding 90%, the highest ever energy extraction efficiency from a spinning BH by a radiatively efficient flow in a GRMHD simulation. This is consistent with jetted ejections observed during XRB outbursts. The two-phase medium may naturally lead to broadened iron line emission observed in the hard state.more » « less
-
Long-duration gamma-ray bursts (GRBs) are powerful cosmic explosions, signaling the death of massive stars. Among them, GRB 221009A is by far the brightest burst ever observed. Because of its enormous energy (Eiso≈ 1055erg) and proximity (z≈ 0.15), GRB 221009A is an exceptionally rare event that pushes the limits of our theories. We present multiwavelength observations covering the first 3 months of its afterglow evolution. The x-ray brightness decays as a power law with slope ≈t−1.66, which is not consistent with standard predictions for jetted emission. We attribute this behavior to a shallow energy profile of the relativistic jet. A similar trend is observed in other energetic GRBs, suggesting that the most extreme explosions may be powered by structured jets launched by a common central engine.more » « less
-
null (Ed.)ABSTRACT Relativistic jets from supermassive black holes are among the most powerful and luminous astrophysical systems in Universe. We propose that the open magnetic field lines through the black hole, which drive a strongly magnetized jet, may have their polarity reversing over time scales related to the growth of the magnetorotational dynamo in the disc, resulting in dissipative structures in the jet characterized by reversing toroidal field polarities, referred to as ‘stripes’. The magnetic reconnection between the stripes dissipates the magnetic energy and powers jet acceleration. The striped jet model can explain the jet acceleration, large-scale jet emission, and blazar emission signatures consistently in a unified physical picture. Specifically, we find that the jet accelerates to the bulk Lorentz factor Γ ≳ 10 within 1-parsec distance from the central engine. The acceleration slows down but continues at larger distances, with intrinsic acceleration rate $$\dot{\Gamma }/\Gamma$$ between $0.0005$ and $$0.005~\rm {yr^{-1}}$$ at tens of parsecs, which is in very good agreement with recent radio observations. Magnetic reconnection continuously accelerates non-thermal particles over large distances from the central engine, resulting in the core-shift effect and overall flat-to-inverted synchrotron spectrum. The large-scale spectral luminosity peak νpeak is antiproportional to the location of the peak of the dissipation, which is set by the minimal stripe width lmin. The blazar zone is approximately at the same location. At this distance, the jet is moderately magnetized, with the comoving magnetic field strength and dissipation power consistent with typical leptonic blazar model parameters.more » « less
-
Abstract The spin of a newly formed black hole (BH) at the center of a massive star evolves from its natal value due to two competing processes: accretion of gas angular momentum that increases the spin and extraction of BH angular momentum by outflows that decreases the spin. Ultimately, the final, equilibrium spin is set by a balance between both processes. In order for the BH to launch relativistic jets and power aγ-ray burst (GRB), the BH magnetic field needs to be dynamically important. Thus, we consider the case of a magnetically arrested disk (MAD) driving the spin evolution of the BH. By applying the semianalytic MAD BH spin evolution model of Lowell et al. to collapsars, we show that if the BH accretes ∼20% of its initial mass, its dimensionless spin inevitably reaches small values,a≲ 0.2. For such spins, and for mass accretion rates inferred from collapsar simulations, we show that our semianalytic model reproduces the energetics of typical GRB jets,Ljet∼ 1050erg s−1. We show that our semianalytic model reproduces the nearly constant power of typical GRB jets. If the MAD onset is delayed, this allows powerful jets at the high end of the GRB luminosity distribution,Ljet∼ 1052erg s−1, but the final spin remains low,a≲ 0.3. These results are consistent with the low spins inferred from gravitational wave detections of binary BH mergers. In a companion paper by Gottlieb et al., we use GRB observations to constrain the natal BH spin to bea≃ 0.2.more » « less
An official website of the United States government
