Abstract Although trends toward earlier ice‐out have been documented globally, the links between ice‐out timing and lake thermal and biogeochemical structure vary spatially. In high‐latitude lakes where ice‐out occurs close to peak intensity of solar radiation, these links remain unclear. Using a long‐term dataset from 13 lakes in West Greenland, we investigated how changing ice‐out and weather conditions affect lake thermal structure and oxygen concentrations. In early ice‐out years, lakes reach higher temperatures across the water column and have deeper epilimnia. Summer hypolimnia are the warmest (~ 11°C) in years when cooler air temperatures follow early ice‐out, allowing full lake turnover. Due to the higher potential for substantive spring mixing in early ice‐out years, a warmer hypolimnion is associated with higher dissolved oxygen concentrations. By affecting variability in spring mixing, the consequences of shifts in ice phenology for lakes at high latitudes differ from expectations based on temperate regions. 
                        more » 
                        « less   
                    
                            
                            A Comparison of Ecological Memory of Lake Ice‐Off in Eight North‐Temperate Lakes
                        
                    
    
            Abstract Ice‐off dates on lakes are some of the longest phenological records in the field of ecology, and some of the best evidence of long‐term climatic change. However, there has been little investigation as to whether the date of ice‐off on a lake impacts spring and summer ecosystem dynamics. Here, I analyzed 274 years of long‐term data from eight north temperate lakes in two climate zones to address whether lakes have ecological memory of ice‐off in the subsequent summer. Five metrics were investigated: epilimnion temperatures, hypolimnion temperatures, hypolimnetic oxygen drawdown, water clarity, and spring primary productivity. The response of the metrics to ice‐off date were variable across latitude and lake type. The northern set of lakes stratified quickly following ice‐off, and early ice‐off years resulted in significantly warmer hypolimnetic temperatures. Oxygen depletion in the hypolimnion was not impacted by ice‐off date, likely because in late ice‐off years the lakes did not fully mix. In the southern lakes, ice‐off date was not correlated to the onset of stratification, with the latter being a more dominant control on hypolimnetic temperature and oxygen. The implications of these findings is that as ice‐off date trends earlier in many parts of the world, the lakes that will likely experience the largest changes in spring and summer ecosystem properties are the lakes that currently have the longest duration of lake ice. In considering a future with warmer winters, these results provide a starting point for predicting how lake ecosystem properties will change with earlier ice‐off. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10445156
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Biogeosciences
- Volume:
- 126
- Issue:
- 6
- ISSN:
- 2169-8953
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)Abstract. The concentration of oxygen is fundamental to lake water quality and ecosystem functioning through its control over habitat availability for organisms, redox reactions, and recycling of organic material. In many eutrophic lakes, oxygen depletion in the bottom layer (hypolimnion) occurs annually during summer stratification. The temporal and spatial extent of summer hypolimnetic anoxia is determined by interactions between the lake and its external drivers (e.g., catchment characteristics, nutrient loads, meteorology) as well as internal feedback mechanisms (e.g., organic matter recycling, phytoplankton blooms). How these drivers interact to control the evolution of lake anoxia over decadal timescales will determine, in part, the future lake water quality. In this study, we used a vertical one-dimensional hydrodynamic–ecological model (GLM-AED2) coupled with a calibrated hydrological catchment model (PIHM-Lake) to simulate the thermal and water quality dynamics of the eutrophic Lake Mendota (USA) over a 37 year period. The calibration and validation of the lake model consisted of a global sensitivity evaluation as well as the application of an optimization algorithm to improve the fit between observed and simulated data. We calculated stability indices (Schmidt stability, Birgean work, stored internal heat), identified spring mixing and summer stratification periods, and quantified the energy required for stratification and mixing. To qualify which external and internal factors were most important in driving the interannual variation in summer anoxia, we applied a random-forest classifier and multiple linear regressions to modeled ecosystem variables (e.g., stratification onset and offset, ice duration, gross primary production). Lake Mendota exhibited prolonged hypolimnetic anoxia each summer, lasting between 50–60 d. The summer heat budget, the timing of thermal stratification, and the gross primary production in the epilimnion prior to summer stratification were the most important predictors of the spatial and temporal extent of summer anoxia periods in Lake Mendota. Interannual variability in anoxia was largely driven by physical factors: earlier onset of thermal stratification in combination with a higher vertical stability strongly affected the duration and spatial extent of summer anoxia. A measured step change upward in summer anoxia in 2010 was unexplained by the GLM-AED2 model. Although the cause remains unknown, possible factors include invasion by the predacious zooplankton Bythotrephes longimanus. As the heat budget depended primarily on external meteorological conditions, the spatial and temporal extent of summer anoxia in Lake Mendota is likely to increase in the near future as a result of projected climate change in the region.more » « less
- 
            Abstract Reductions in ice cover duration and earlier ice breakup are two of the most prevalent responses to climate warming in lakes in recent decades. In dimictic lakes, the subsequent periods of spring mixing and summer stratification are both likely to change in response to these phenological changes in ice cover. Here, we used a modeling approach to simulate the effect of changes in latitude on long‐term trends in duration of ice cover, spring mixing, and summer stratification by “moving” a well‐studied lake across a range of latitudes in North America (35.2°N to 65.7°N). We found a changepoint relationship between the timing of ice breakup vs. spring mixing duration on 09 May. When ice breakup occurred before 09 May, which routinely occurred at latitudes < 47°N, spring mixing was longer and more variable; when ice breakup occurred after 09 May at latitudes > 47°N, spring mixing averaged 1 day with low variability. In contrast, the duration of summer stratification showed a relatively slower rate of increase when ice breakup occurred before 09 May (< 47°N) compared to a 109% faster rate of increase when ice breakup was after 09 May (> 47°N). Projected earlier ice breakup can result in important nonlinear changes in the relative duration of spring mixing and summer stratification, which can lead to mixing regime shifts that influence the severity of oxygen depletion differentially across latitudes.more » « less
- 
            Abstract Lake water clarity, phytoplankton biomass, and hypolimnetic oxygen concentration are metrics of water quality that are highly degraded in eutrophic systems. Eutrophication is linked to legacy nutrients stored in catchment soils and in lake sediments. Long lags in water quality improvement under scenarios of nutrient load reduction to lakes indicate an apparent ecosystem memory tied to the interactions between water biogeochemistry and lake sediment nutrients. To investigate how nutrient legacies and ecosystem memory control lake water quality dynamics, we coupled nutrient cycling and lake metabolism in a model to recreate long‐term water quality of a eutrophic lake (Lake Mendota, Wisconsin, USA). We modeled long‐term recovery of water quality under scenarios of nutrient load reduction and found that the rates and patterns of water quality improvement depended on changes in phosphorus (P) and organic carbon storage in the water column and sediments. Through scenarios of water quality improvement, we showed that water quality variables have distinct phases of change determined by the turnover rates of storage pools—an initial and rapid water quality improvement due to water column flushing, followed by a much longer and slower improvement as sediment P pools were slowly reduced. Water clarity, phytoplankton biomass, and hypolimnetic dissolved oxygen differed in their time responses. Water clarity and algal biomass improved within years of nutrient reductions, but hypolimnetic oxygen took decades to improve. Even with reduced catchment loading, recovery of Lake Mendota to a mesotrophic state may require decades due to nutrient legacies and long ecosystem memory.more » « less
- 
            Abstract In lakes, the production and emission of methane (CH4) have been linked to lake trophic status. However, few studies have quantified the temporal response of lake CH4dynamics to primary productivity at the ecosystem scale or considered how the response may vary across lakes. Here, we investigate relationships between lake CH4dynamics and ecosystem primary productivity across both space and time using data from five lakes in northern Wisconsin, USA. From 2014 to 2019, we estimated hypolimnetic CH4storage rates for each lake using timeseries of hypolimnetic CH4concentration through the summer season. Across all lakes and years, hypolimnetic CH4storage ranged from <0.001 to 7.6 mmol CH4 m−2 d−1and was positively related to the mean summer rate of gross primary productivity (GPP). However, within‐lake temporal responses to GPP diverged from the spatial relationship, and GPP was not a significant predictor of interannual variability in CH4storage at the lake scale. Using these data, we consider how and why temporal responses may differ from spatial patterns and demonstrate how extrapolating cross‐lake relationships for prediction at the lake scale may substantially overestimate the rate of change of CH4dynamics in response to lake primary productivity. We conclude that future predictions of lake‐mediated climate feedbacks in response to a shifting distribution of trophic status should incorporate both varying lake responses and the temporal scale of change.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
