Abstract Van der Waals heterostructures formed by stacked 2D materials show exceptional electronic, mechanical, and optical properties. Superlubricity, a condition where atomically flat, incommensurate planes of atoms result in ultra‐low friction, is a prime example enabling, for example, self‐assembly of optically visible graphene nanostructures in air via a sliding auto‐kirigami process. Here, it is demonstrated that a subtle but ubiquitous adsorbate stripe structure found on graphene and graphitic surfaces in ambient conditions remains stable within the interface between twisted graphene layers as they slide over each other. Despite this contamination, the interface retains an exceptional superlubricious state with an estimated upper bound frictional shear strength of 10 kPa, indicating that direct atomic incommensurate contact is not required to achieve ambient superlubricity for 2D materials. The results suggest that any phenomena depending on 2D heterostructure interfaces such as exotic electronic behavior may need to consider the presence of stripe adsorbate structures that remain intercalated.
more »
« less
Mechanisms of Interface Cleaning in Heterostructures Made from Polymer‐Contaminated Graphene
Abstract Heterostructures obtained from layered assembly of 2D materials such as graphene and hexagonal boron nitride have potential in the development of new electronic devices. Whereas various materials techniques can now produce macroscopic scale graphene, the construction of similar size heterostructures with atomically clean interfaces is still unrealized. A primary barrier has been the inability to remove polymeric residues from the interfaces that arise between layers when fabricating heterostructures. Here, the interface cleaning problem of polymer‐contaminated heterostructures is experimentally studied from an energy viewpoint. With this approach, it is established that the interface cleaning mechanism involves a combination of thermally activated polymer residue mobilization and their mechanical actuation. This framework allows a systematic approach for fabricating record large‐area clean heterostructures from polymer‐contaminated graphene. These heterostructures provide state‐of‐the‐art electronic performance. This study opens new strategies for the scalable production of layered materials heterostructures.
more »
« less
- Award ID(s):
- 1940764
- PAR ID:
- 10445164
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Small
- Volume:
- 18
- Issue:
- 20
- ISSN:
- 1613-6810
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The proliferation of van der Waals (vdW) heterostructures formed by stacking layered materials can accelerate scientific and technological advances. Here, we report a strategy for constructing vdW heterostructures through the interface engineering of the exfoliation substrate using a sub-5 nm polymeric film. Our construction method has two main features that distinguish it from existing techniques. First is the consistency of its exfoliation process in increasing the yield and in producing large (>10,000 μm2) monolayer graphene. Second is the applicability of its layer transfer process to different layered materials without requiring a specialized stamp—a feature useful for generalizing the assembly process. We demonstrate vdW graphene devices with peak carrier mobility of 200,000 and 800,000 cm2V−1s−1at room temperature and 9 K, respectively. The simplicity of our construction method and its versatility to different layered materials may open doors for automating the fabrication process of vdW heterostructures.more » « less
-
Abstract Interface engineering at complex oxide heterostructures enables a wide range of electronic functionalities critical for next‐generation devices. Here it is demonstrated that ultra‐low‐voltage electron beam lithography (ULV‐EBL) creates high‐quality mesoscale structures at LaAlO3/SrTiO3(LAO/STO) interfaces with greater efficiency than conventional methods. Nanowires, tunnel barriers, and electron waveguides are successfully patterned that exhibit distinctive transport characteristics including 1D superconductivity, nonlinear current–voltage behavior, and ballistic electron flow. While conductive atomic force microscopy (c‐AFM) previously enabled similar interface modifications, ULV‐EBL provides significantly faster patterning speeds (10 mm s−1vs 1 µm s−1), wafer‐scale capability (>(10 cm)2vs <(90 µm)2), and maintenance of pattern quality under vacuum conditions. Additionally, an efficient oxygen plasma treatment method is developed for pattern erasure and surface cleaning, which reveals novel surface reaction dynamics at oxide interfaces. These capabilities establish ULV‐EBL as a versatile approach for scalable interface engineering in complex oxide heterostructures, with potential applications in reconfigurable electronics, sensors, and oxide‐based devices.more » « less
-
Abstract Monolayer hexagonal boron nitride (hBN) has been widely considered a fundamental building block for 2D heterostructures and devices. However, the controlled and scalable synthesis of hBN and its 2D heterostructures has remained a daunting challenge. Here, an hBN/graphene (hBN/G) interface‐mediated growth process for the controlled synthesis of high‐quality monolayer hBN is proposed and further demonstrated. It is discovered that the in‐plane hBN/G interface can be precisely controlled, enabling the scalable epitaxy of unidirectional monolayer hBN on graphene, which exhibits a uniform moiré superlattice consistent with single‐domain hBN, aligned to the underlying graphene lattice. Furthermore, it is identified that the deep‐ultraviolet emission at 6.12 eV stems from the 1s‐exciton state of monolayer hBN with a giant renormalized direct bandgap on graphene. This work provides a viable path for the controlled synthesis of ultraclean, wafer‐scale, atomically ordered 2D quantum materials, as well as the fabrication of 2D quantum electronic and optoelectronic devices.more » « less
-
Heusler compounds, in both cubic and hexagonal polymorphs, exhibit a remarkable range of electronic, magnetic, elastic, and topological properties, rivaling that of the transition metal oxides. To date, research on these quantum materials has focused primarily on bulk magnetic and thermoelectric properties or on applications in spintronics. More broadly, however, Heuslers provide a platform for discovery and manipulation of emergent properties at well-defined crystalline interfaces. Here, motivated by advances in the epitaxial growth of layered Heusler heterostructures, I present a vision for Heusler interfaces, focusing on the frontiers and challenges that lie beyond spintronics. The ability to grow these materials epitaxially on technologically important semiconductor substrates, such as GaAs, Ge, and Si, provides a direct path for their integration with modern electronics. Further advances will require new methods to control the stoichiometry and defects to “electronic grade” quality and to control the interface abruptness and ordering at the atomic scale.more » « less
An official website of the United States government
