The southern Appalachians preserve evidence for three Paleozoic orogenies that contributed to construction of the composite southern Appalachian orogen, including the Taconic (480-440 Ma), Neoacadian (380-340 Ma), and Alleghanian (330-280 Ma) events. However, the complexity of thermal-metamorphic overprinting and polydeformation has impeded efforts to examine questions related to tectonic processes such as the crustal escape flow hypothesis in the southern Appalachians. To address this, new monazite and xenotime laser ablation split-stream U-Pb and hornblende 40Ar/39Ar dates have been produced for the Blue Ridge (BR) and Inner Piedmont (IP), and these data are being compiled with all previously available geo-thermochronological and quantitative P-T data to construct P-T-t histories for different parts of the orogen. Monazite U-Pb dates from prograde monazites in the North Carolina BR yield a clear Taconic (464-441 Ma) metamorphic signal for conditions up to granulite facies, which is interpreted to result from development of a Taconic accretion-subduction complex. Following the Taconic arcs collision, this part of the BR was cooled during Neoacadian and Alleghanian uplift and exhumation pulses, as indicated by thermochronologic dates spanning a wide range of closure temperatures (~550-220 °C). In the IP and Sauratown Mountains window, U-Pb dates of mostly prograde monazite growth yield a dominant Neoacadian signal (369-358 Ma), which corroborates previous age estimates for IP Barrovian metamorphism up to sillimanite II grade. In the IP, hornblende 40Ar/39Ar ages of 380-345 Ma generally indicate syn-Neoacadian cooling below ~500 °C. In the IP between the Brevard and Brindle Creek fault zones, Y-rich monazites yield younger dates (~330 Ma) that overlap with hornblende 40Ar/39Ar yield ages (335-324 Ma). Combined, these ages are interpreted to reflect post-Neoacadian reactivation and retrogression of the Brevard fault zone and potential folding(?) of the Brindle Creek fault zones during early Alleghanian deformation. This retrograde deformation persists until at least 297 Ma, as reflected by xenotime dates in the Brevard zone (311-297 Ma). Future work will address how the timing and extent of metamorphism, deformation, and exhumation may vary south of the present study area.
more »
« less
Petrochronologic constraints on inverted metamorphism, terrane accretion, thrust stacking, and ductile flow in the Gneiss Dome belt, northern Appalachian orogen
Abstract Gneiss domes are an integral element of many orogenic belts and commonly provide tectonic windows into deep crustal levels. Gneiss domes in the New England segment of the Appalachian orogen have been classically associated with diapirism and fold interference, but alternative models involving ductile flow have been proposed. We evaluate these models in the Gneiss Dome belt of western New England with U‐Th‐Pb monazite, xenotime, zircon, and titanite petrochronology and major and trace element thermobarometry. These data constrain distinct pressure–temperature–time (P‐T‐t) paths for each unit in the gneiss dome belt tectono‐stratigraphy. The structurally lowest units, Laurentia‐derived migmatitic gneisses of the Waterbury dome, document two stages of metamorphism (455–435 and 400–370 Ma) with peak Acadian metamorphic conditions of ~1.0–1.2 GPa at 750–780°C at 391 ± 7 to 386 ± 4 Ma. The next structurally higher unit, the Gondwana‐derived Taine Mountain Formation, records Taconic (peak conditions: 0.6 GPa, 600°C at 441 ± 4 Ma) and Acadian (peak: 0.8–1.0 GPa, 650°C at 377 ± 4 Ma) metamorphism. The overlying Collinsville Formation yielded a 473 ± 5 Ma crystallization age and evidence for metamorphic conditions of 650°C at 436 ± 4 Ma and 1.2–1.0 GPa, 750–775°C at 397 ± 4 to 385 ± 6 Ma. The structurally higher Sweetheart Mountain Member of the Collinsville Formation yielded only Acadian zircon, monazite, and xenotime dates and evidence for high‐pressure granulite facies metamorphism (1.8 GPa, 815°C) at circa 380–375 Ma. Cover rocks of the dome‐mantling The Straits Schist records peak conditions of ~1 GPa, 700°C at 386 ± 6 to 380 ± 4 Ma. Garnet breakdown to monazite and/or xenotime occurred in all units at circa 375–360 and 345–330 Ma. Peak Acadian metamorphic pressures increase systematically from the structurally lowest to highest units (from 1.0 to 1.8 GPa). This inverted metamorphic sequence is incompatible with the diapiric and fold interference models, which predict the highest pressures at the structurally lowest levels. Based upon P‐T‐t and structural data, we prefer a model involving, first, circa 380 Ma thrust stacking followed by syn‐collisional orogen parallel extension, ductile flow, and rise of the domes between 380 and 365 Ma. Garnet breakdown at circa 345–330 Ma is interpreted to reflect further exhumation during collapse of the Acadian orogenic plateau. These results highlight the power of integrating petrologic constraints with paired geochemical and geochronologic data from multiple chronometers to test structural and tectonic models and show that syn‐convergent orogen parallel ductile flow dramatically modified earlier accretion‐related structures in New England. Further, the Gneiss Dome belt documents gneiss dome development in a syn‐collisional, thick crust setting, providing an ancient example of middle to lower crustal processes that may be occurring today in the modern Himalaya and Pamir Range.
more »
« less
- Award ID(s):
- 1930014
- PAR ID:
- 10445179
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Journal of Metamorphic Geology
- Volume:
- 41
- Issue:
- 9
- ISSN:
- 0263-4929
- Format(s):
- Medium: X Size: p. 1197-1235
- Size(s):
- p. 1197-1235
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We present results of integrated 40Ar/39Ar geochronology and microstructural analyses of samples from Taconic thrust faults of the northern New England Appalachians that provide evidence for reactivation during the Acadian, Neo-Acadian, and Alleghenian orogenies. 40Ar/39Ar ages c. 420 Ma from western frontal thrusts of the Green Mountains and Berkshire Massif have been interpreted previously to reflect partial resetting of Taconic ages during Acadian metamorphism. In Massachusetts and southern Vermont, these W-directed thrusts transport Grenville basement and its cover sequences over Cambrian-to-Ordovician phyllites and graphitic schists. Our recent investigations of these faults, however, yield a suite of c. 420 Ma 40Ar/39Ar ages obtained from syn-tectonic mica in mylonites and footwall schist/phyllite that are interpreted, rather, to reflect a pulse of W-directed thrusting. This interpretation that these ages record the timing of deformation is based, in part, on the preservation of quartz and feldspar dislocation creep microstructures (i.e., lack of evidence for static recrystallization), as well as the regional distribution of these data relative to Acadian metamorphic isograds. These results align with recent findings for the timing of formation of the Green Mountain Anticlinorium in northern Vermont, as well as detrital zircon data that require isolation of the Catskill Basin from the Connecticut Valley-Gaspe Basin (CVGB) at the onset of deposition around that time. Mylonites and samples from the adjacent footwall schists and phyllites also locally record evidence for minor to wholesale resetting c. 355 Ma associated with a younger phase of ductile deformation. Further evidence for partial resetting of 40Ar/39Ar ages c. 250 is associated with hematite-rich seams parallel to the mylonitic foliation and cross-cutting fractures. We explore how these age populations relate to those obtained from, for example, the CVGB and Chester and Athens Domes, and their implications for correlating surface geology with results from seismic imaging of the lithospheric and mantle structure in the northern New England Appalachians.more » « less
-
Abstract Metamorphic rocks from the Connecticut Valley Trough (CVT), Vermont, and Massachusetts, have been examined using quartz‐in‐garnet (QuiG) and conventional thermobarometry, thermodynamic reaction modelling, diffusion modelling, and40Ar/39Ar thermochronology to constrain theirP–T–tpaths during Acadian metamorphism and subsequent exhumation. Numerous samples, collected in the vicinity of the Acadian domes, contain garnet porphyroblasts that display cloudy zones characterized by numerous fluid inclusions and modified garnet compositions associated with the replacement of the original garnet by biotite±muscovite±plagioclase±quartz±lowXgrs/enrichedXsps. QuiG and conventional thermobarometry constrain both the conditions of garnet nucleation and peakP–Tconditions to have occurred at ~0.85–1.05 GPa, ~550–600°C. Most notably, QuiG barometry was performed on inclusions adjacent to these reaction zones in conjunction with Gibbs method reaction modelling to reveal that these dissolution–reprecipitation reactions occurred during nearly isothermal decompression from the peakP–Tconditions to around ~0.3 GPa, 550°C. Diffusion modelling reveals that the Mn zoning profiles created during garnet resorption that accompanied decompression formed in less thanc. 3 Ma, which constrains the tectonic exhumation to have occurred at 8–10 mm/year. Subsequent cooling to 500°C occurred rapidly at a rate of 100°C/Ma, followed by slower cooling reaching 1.7°C /Ma by the mid Carboniferous. This is the first reported example of QuiG barometry revealing a multi‐stage metamorphic history and highlights the utility of this method for unravelling complex metamorphic terranes.more » « less
-
Abstract In orogens worldwide and throughout geologic time, large volumes of deep continental crust have been exhumed in domal structures. Extension‐driven ascent of bodies of deep, hot crust is a very efficient mechanism for rapid heat and mass transfer from deep to shallow crustal levels and is therefore an important mechanism in the evolution of continents. The dominant rock type in exhumed domes is quartzofeldspathic gneiss (typically migmatitic) that does not record its former high‐pressure (HP) conditions in its equilibrium mineral assemblage; rather, it records the conditions of emplacement and cooling in the mid/shallow crust. Mafic rocks included in gneiss may, however, contain a fragmentary record of a HP history, and are evidence that their host rocks were also deeply sourced. An excellent example of exhumed deep crust that retains a partial HP record is in the Montagne Noire dome, French Massif Central, which contains well‐preserved eclogite (garnet+omphacite+rutile+quartz) in migmatite in two locations: one in the dome core and the other at the dome margin. Both eclogites recordP ~ 1.5 ± 0.2 GPa atT ~ 700 ± 20°C, but differ from each other in whole‐rock and mineral composition, deformation features (shape and crystallographic preferred orientation, CPO), extent of record of prograde metamorphism in garnet and zircon, and degree of preservation of inherited zircon. Rim ages of zircon in both eclogites overlap with the oldest crystallization ages of host gneiss atc.310 Ma, interpreted based on zircon rare earth element abundance in eclogite zircon as the age of HP metamorphism. Dome‐margin eclogite zircon retains a widespread record of protolith age (c.470–450 Ma, the same as host gneiss protolith age), whereas dome‐core eclogite zircon has more scarce preservation of inherited zircon. Possible explanations for differences in the two eclogites relate to differences in the protolith mafic magma composition and history and/or the duration of metamorphic heating and extent of interaction with aqueous fluid, affecting zircon crystallization. Differences in HP deformation fabrics may relate to the position of the eclogite facies rocks relative to zones of transpression and transtension at an early stage of dome development. Regardless of differences, both eclogites experienced HP metamorphism and deformation in the deep crust atc.310 Ma and were exhumed by lithospheric extension—with their host migmatite—near the end of the Variscan orogeny. The deep crust in this region was rapidly exhumed from ~50 to <10 km, where it equilibrated under low‐P/high‐Tconditions, leaving a sparse but compelling record of the deep origin of most of the crust now exposed in the dome.more » « less
-
The Taconic thrust belt in New England is the type locality of the Ordovician Taconic orogeny, the result of partial subduction of the rifted Laurentian margin beneath the Gondwanan-derived Moretown terrane (MT) and the Shelburne Falls arc. Evidence for Ordovician deformation and metamorphism is only preserved in rocks of the Laurentian margin; Taconic deformation and metamorphism in the MT and suture zone were overprinted by Devonian Acadian tectonism. New thermochronological data from the Taconic thrust belt indicate that many faults were active during the Silurian and Devonian, well after the Taconic orogeny. Crust under accreted terranes in New England is much thinner (~30 km) than below the Grenville belt along the Laurentian margin (~45 km), and Li et al. (2018) noted a particularly abrupt change in crustal thickness in southwestern New England near the suture between Laurentia and the MT. New seismic evidence indicates that the abrupt offset in Moho depth in CT and MA occurs east of an anisotropic region (~25 km wide and ~15 km thick) that lies between the shallow Moho of the MT and the deep Moho of Laurentia. The Taconic and Acadian orogens are narrower in southern New England than they are to the north, suggesting greater crustal shortening, and high-grade metamorphic rocks exposed in southern New England indicate greater erosion of overlying crust. Hillenbrand et al. (2021) proposed that an Acadian plateau existed in southern New England from 380 to 330 Ma and that plateau collapse after 330 Ma led to the abrupt Moho offset. We suggest that an indenter in southern New England focused the Acadian collision between Laurentia and Avalonia leading to greater crustal shortening and uplift than elsewhere the Appalachians. The east-dipping suture zone and Neoproterozoic normal faults cutting the leading edge of Laurentia were reactivated as west-directed thrust faults. Further, the diffuse fault zone that displaced the MT and the leading edge of the Laurentian margin penetrated the crust and displaced the Moho beneath the MT creating a double Moho near the suture. The anisotropic zone between the double Moho region is likely composed of crustal and mantle rocks bounded by faults. It is unclear how far east rifted Grenville crust extends under the MT; it is possible that the MT is no longer above its original lithospheric mantle.more » « less
An official website of the United States government
