Forested headwater streams disproportionately rely on inputs of organic matter to fuel their food webs, and characterizing the breakdown of organic matter offers insights into ecosystem function. Organic matter breakdown rates can be influenced by the availability of limiting nutrients, and describing patterns of breakdown rates across nutrient gradients is increasingly relevant as inland waters undergo eutrophication. Here, we determined the breakdown rates of coarse woody debris (kwood) across 5 streams located at La Selva Biological Station, Costa Rica, that receive a gradient of interbasin modified groundwater inputs, creating a gradient in P concentration (6–134 lg/L soluble reactive P [SRP]). The fastest breakdown rate (kwood 50.77/y) occurred in the stream with the highest SRP, and kwood was positively correlated with SRP across the 5 streams. Further, we characterized the assemblage of macroinvertebrates from wood packs. Macroinvertebrate assemblages were different between the 5 streams, with more dense and diverse assemblages in streams with higher SRP and faster breakdown rates. Our results contribute to a growing field of study on the effect of nutrients on organic matter dynamics in inland waters by characterizing the effect of SRP on breakdown rates of wood in tropical streams.
more »
« less
Do experimental pH increases alter the structure and function of a lowland tropical stream?
Abstract Disturbances can alter the structure and function of ecosystems. In stream ecosystems, changes in discharge and physicochemistry at short, intermediate, and long recurrence intervals can affect food webs and ecosystem processes. In this paper, we compare pH regimes in streams at La Selva Biological Station, Costa Rica, where episodic acidification frequency across the stream network varies widely due to buffering from inputs of bicarbonate‐rich interbasin groundwater. To examine the effects of acidification on ecosystem structure and function, we experimentally increased the buffering capacity of a headwater stream reach and compared it to an unbuffered upstream reach. We compared these reaches to a naturally buffered and unbuffered reaches of a second headwater stream. We quantified ecosystem structural (macroinvertebrate assemblages on leaf litter and coarse woody debris) and functional responses (leaf litter and coarse woody debris decomposition rates, and growth rates of a focal insect taxon [Diptera: Chironomidae]). Non‐metric multidimensional scaling and analysis of similarity revealed that macroinvertebrate assemblages were relatively homogenous across the four study reaches, although the naturally buffered reach was the most dissimilar. Ecosystem function, as measured by chironomid growth rates, was greater in the naturally buffered reach, while decomposition rates did not differ across the four reaches. Our results indicate that biological assemblages are adapted to pH regimes of frequently acidified stream reaches. Our experiment informs the effects on structure and function at short time scales in streams that experience moderate acidification, but larger magnitude acidification events in response to hydroclimatic change, as projected under climate change scenarios, may induce stronger responses in streams.
more »
« less
- PAR ID:
- 10445393
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Ecosphere
- Volume:
- 13
- Issue:
- 7
- ISSN:
- 2150-8925
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Determining how streams develop naturally, particularly the ecological role of newly developed riparian canopy cover, is essential to understanding the factors that structure new stream communities and provides valuable information for restoring highly disturbed ecosystems. However, attempts to understand primary succession in riverine ecosystems have been hindered by a lack of data owing to the infrequent formation of new rivers on the landscape. In the present study, we used five streams formed following the 1980 eruption of Mount St. Helens (WA, USA) to examine the influence of canopy cover development on algal and benthic macroinvertebrate assemblages, biomass, and organic matter processing. Newly established closed canopy reaches had less available light, but no significant differences in algal biomass or macroinvertebrate assemblages compared to open canopy reaches. Instead, algal and macroinvertebrate communities were structured mainly by hydrologic differences among watersheds. In contrast, organic matter processing rates were sensitive to canopy cover development, and rates were faster under closed canopies, especially in late summer or after terrestrial preconditioning. After 40 years of stream and riparian primary successional development, canopy cover strongly influences ecosystem function, but aquatic organism assembly was more influenced by physio-chemical and hydrologic variation. Our findings provide insight into the development of in-stream assemblages and ecosystem functions, which is also relevant to efforts to address major disturbances to stream channels, such as volcanic eruptions, floods, forest fires, and clear-cut logging.more » « less
-
Abstract Leaf breakdown is an important process in forested headwater streams. A common method used to quantify the role of macroinvertebrate and microbial communities in leaf litter breakdown involves using paired mesh bags that either allow or exclude macroinvertebrate access to leaves. We examined common assumptions of the paired litterbag method to test (1) whether mesh size alters microbial respiration and (2) whether the effects of abrasive flows (e.g., from water and sediment) differ between coarse‐ and fine‐mesh litterbags. We measured rates of microbial respiration on Acer rubrum and Rhododendron maximum leaves incubated in coarse‐ and fine‐mesh litterbags. We also measured rates of abrasion using aerated concrete blocks in pairs of coarse‐ and fine‐mesh bags in ten streams across a gradient of discharge. We found that rates of microbial respiration on Acer rubrum leaves conditioned in fine‐mesh bags were 65% greater than the rates of respiration in paired coarse‐mesh bags, but respiration rates on Rhododendron maximum were similar in coarse‐ and fine‐mesh bags. Abrasion was, on average, 56% greater in coarse‐mesh than paired fine‐mesh bags, and these effects were greater in streams with higher discharge. These results suggest that more caution is required when attributing the difference in leaf breakdown between coarse‐ and fine‐mesh bags to macroinvertebrates. Because the effect of mesh size on microbial respiration of Acer leaves and abrasion are opposite in direction, the effect that dominates and creates bias likely depends on both environmental context and experimental design.more » « less
-
Genetic variation within a dominant riparian forest tree affects susceptibility to a leaf-galling aphid (Pemphigus betae), which induces phytochemical and structural changes in leaf tissue. Research Highlights: We show here that these changes to tree leaf tissue alter adjacent in-stream leaf litter decomposition rates and the aquatic macroinvertebrate community associated with litter in the stream for some Populus genotypes. Background and Objectives: Naturally occurring hybrid cottonwoods (Populus fremontii × Populus angustifolia) are differentially susceptible to aphid attack and vary in induced phytochemistry following attack. When leaves are galled by aphids, foliar tissue is altered structurally (through the formation of pea-sized gall structures) and phytochemically (through an increase in foliar condensed tannin concentrations). Materials and Methods: To examine the effect of aphid-galled leaves on forest stream processes, we collected both galled and un-galled leaves from five clones of three hybrid cottonwood genotypes in an experimental forest. We measured in-stream litter decomposition rates, aquatic fungal biomass and aquatic macroinvertebrate community composition. Results: Decomposition rates differed among genotypes and the galled litter treatments, with a 27% acceleration of decomposition rate for the galled litter of one genotype compared to its own un-galled litter and no differences between galled and un-galled litters for the other two genotypes. Genotype by foliar gall status interactions also occurred for measures of phytochemistry, indicating a prevalence of complex interactions. Similarly, we found variable responses in the macroinvertebrate community, where one genotype demonstrated community differences between galled and un-galled litter. Conclusions: These data suggest that plant genetics and terrestrial forest herbivory may be important in linking aquatic and terrestrial forest processes and suggest that examination of decomposition at finer scales (e.g., within species, hybrids and individuals) reveals important ecosystem patterns.more » « less
-
Coarse particulate organic matter (CPOM; organic matter 1–100 mm in diameter, excluding small wood) stored in streams provides an important energy source for aquatic ecosystems, and CPOM transport provides downstream energy subsidies and is a pathway for watershed carbon export. However, we lack understanding of the magnitude of and processes influencing CPOM storage and transport in headwater streams. We assessed how geomorphic complexity and hydrologic regime influence CPOM transport and storage in the Colorado Front Range, USA. We compared CPOM transport during snowmelt in a stream reach with high retentive feature (e.g., wood, cobbles, and other features) frequency to a reach with low retentive feature frequency, assessing how within-a-reach geomorphic context influences CPOM transport. We also compared CPOM transport in reaches with differing valley geometry (two confined reaches versus a wide, multi-thread river bead) to assess the influence of geomorphic variations occurring over larger spatial extents. Additionally, we compared CPOM storage in accumulations in reaches (n= 14) with flowing water or dry conditions in late summer and investigated how small pieces of organic matter [e.g., woody CPOM and small wood (>1 min length and 0.05–1 min diameter or 0.5–1 min length and >0.1 min diameter)] influence CPOM storage. We found that within-a-reach retentive feature frequency did not influence CPOM transport. However, valley geometry influenced CPOM transport, with a higher CPOM transport rate (median: 1.53 g min−1) downstream of a confined stream reach and a lower CPOM transport rate (median: 0.13 g min−1) downstream of a low gradient, multi-thread river bead. Additionally, we found that particulate organic carbon (POC) export (0.063 Mg C) in the form of CPOM was substantially lower than dissolved organic carbon (DOC) export (12.3 Mg C) in one of these headwater streams during the 2022 water year. Dry reaches stored a higher volume of CPOM (mean = 29.18 m3ha−1) compared to reaches with flowing water (15.75 m3ha−1), and woody CPOM pieces trapped 37% of CPOM accumulations. Our results demonstrate that the influence of geomorphic context on CPOM transport depends on the scale and type of geomorphic complexity, POC may be lower than DOC export in some headwater streams, and small woody organic material is important for trapping CPOM small streams.more » « less
An official website of the United States government
