Pt(II) chemotherapeutic complexes have been used as predominant anticancer drugs for nearly fifty years. Currently there are three FDA-approved chemotherapeutic Pt(II) complexes: cisplatin, carboplatin, and oxaliplatin. Until recently, it was believed that all three complexes induced cellular apoptosis through the DNA damage response pathway. Studies within the last decade, however, suggest that oxaliplatin may instead induce cell death through a unique nucleolar stress pathway. Pt(II)-induced nucleolar stress is not well understood and further investigation of this pathway may provide both basic knowledge about nucleolar stress as well as insight for more tunable Pt(II) chemotherapeutics. Through a previous structure-function analysis, it was determined that nucleolar stress induction is highly sensitive to modifications at the 4-position of the 1,2-diaminocyclohexane (DACH) ring of oxaliplatin. Specifically, more flexible and less rigid substituents (methyl, ethyl, propyl) induce nucleolar stress, while more rigid and bulkier substituents (isopropyl, acetamide) do not. These findings suggest that a clickcapable functional group can be installed at the 4-position of the DACH ring while still inducing nucleolar stress. Herein, we report novel click-capable azide-modified oxaliplatin mimics that cause nucleolar stress. Through NPM1 relocalization, fibrillarin redistribution, and gH2AX studies, key differences have been identified between previously studied click-capable cisplatin mimics and these novel click-capable oxaliplatin mimics. These complexes provide new tools to identify cellular targets and localization through post-treatment Cu-catalyzed azide–alkyne cycloaddition and may help to better understand Pt(II)-induced nucleolar stress. To our knowledge, these are the first reported oxaliplatin mimics to include an azide handle, and cis-[(1R,2R,4S) 4-methylazido-1,2-cyclohexanediamine]dichlorido platinum(II) is the first azide-functionalized oxaliplatin derivative to induce nucleolar stress.
more »
« less
Influence of Ring Modifications on Nucleolar Stress Caused by Oxaliplatin‐Like Compounds**
Abstract Oxaliplatin, a platinum compound in broad clinical use, can induce cell death through a nucleolar stress pathway rather than the canonical DNA damage response studied for other Pt(II) compounds. Previous work has found that the oxaliplatin 1,2‐diaminocyclohexane (DACH) ring but not the oxalate leaving group is important to the ability to induce nucleolar stress. Here we study the influence of DACH ring substituents at the 4‐position on the ability of DACH−Pt(II) compounds to cause nucleolar stress. We determine that DACH−Pt(II) compounds with 4‐position methyl, ethyl, or propyl substituents induce nucleolar stress, but DACH−Pt(II) compounds with 4‐isopropyl substituents do not induce nucleolar stress. This effect is independent of whether the substituent is in the axial or equatorial position relative to thetransdiamines of the ligand. These results suggest that spatially sensitive interactions could be involved in the ability of platinum compounds to cause nucleolar stress.
more »
« less
- PAR ID:
- 10445424
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- ChemBioChem
- Volume:
- 23
- Issue:
- 14
- ISSN:
- 1439-4227
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Transcription of ribosomal RNA (rRNA) by RNA Polymerase I (Pol I) is often upregulated in cancer to facilitate rapid cell growth and proliferation, and has emerged as a potential target for chemotherapeutic agents. BMH-21 and Pt(II) chemotherapeutic agent oxaliplatin are well documented as inhibitors of Pol I activity, however the underlying mechanisms for this inhibition are not completely understood. Here, we applied chromatin immunoprecipitation sequencing (ChIP-seq) techniques and immunofluorescence imaging to probe the influence of oxaliplatin and BMH-21 on Pol I machinery. We demonstrate oxaliplatin and BMH-21 induce early nucleolar stress leading to the formation of “nucleolar caps” containing Pol I and upstream binding factor (UBF) which corresponds with broad reductions in ribosomal DNA (rDNA) occupancy of Pol I. Distinct occupancy patterns for the two compounds are revealed in ChIP-seq experiments. Taken together, our findings suggest that in vivo, oxaliplatin does not induce Pol I inhibition via interrupting a specific step in Pol I transcription, while treatment with BMH-21 induced unique polymerase stalling at the promoter and terminator regions of the human ribosomal RNA gene.more » « less
-
Abstract Searching for a connection between the two‐electron redox behavior of Group‐14 elements and their possible use as platforms for the photoreductive elimination of chlorine, we have studied the photochemistry of [(o‐(Ph2P)C6H4)2GeIVCl2]PtIICl2and [(o‐(Ph2P)C6H4)2ClGeIII]PtIIICl3, two newly isolated isomeric complexes. These studies show that, in the presence of a chlorine trap, both isomers convert cleanly into the platinum germyl complex [(o‐(Ph2P)C6H4)2ClGeIII]PtICl with quantum yields of 1.7 % and 3.2 % for the GeIV–PtIIand GeIII–PtIIIisomers, respectively. Conversion of the GeIV–PtIIisomer into the platinum germyl complex is a rare example of a light‐induced transition‐metal/main‐group‐element bond‐forming process. Finally, transient‐absorption‐spectroscopy studies carried out on the GeIII–PtIIIisomer point to a ligand arene–Cl.charge‐transfer complex as an intermediate.more » « less
-
The compound [5,10,15,20-tetrakis(4-fluoro-2,6-dimethylphenyl)porphyrinato]platinum(II), [Pt(C52H40F4N4)] or Pt(II)TFP, has been synthesized and structurally characterized by single-crystal X-ray crystallography. The Pt porphyrin exhibits a long-lived phosphorescent excited state (τ0 = 66 µs), which has been characterized by transient absorption and emission spectroscopy. The phosphorescence is extremely sensitive to oxygen, as reflected by a quenching rate constant of 5.0 × 108 M−1 s−1, and as measured by Stern–Volmer quenching analysis.more » « less
-
Nucleolar stress occurs when ribosome production or function declines. Nucleolar stress in stem cells or progenitor cells often leads to disease states called ribosomopathies. Drosophila offers a robust system to explore how nucleolar stress causes cell cycle arrest, apoptosis, or autophagy depending on the cell type. We provide an overview of nucleolar stress in Drosophila by depleting nucleolar phosphoprotein of 140 kDa (Nopp140), a ribosome biogenesis factor (RBF) in nucleoli and Cajal bodies (CBs). The depletion of Nopp140 in eye imaginal disc cells generates eye deformities reminiscent of craniofacial deformities associated with the Treacher Collins syndrome (TCS), a human ribosomopathy. We show the activation of c-Jun N-terminal Kinase (JNK) in Drosophila larvae homozygous for a Nopp140 gene deletion. JNK is known to induce the expression of the pro-apoptotic Hid protein and autophagy factors Atg1, Atg18.1, and Atg8a; thus, JNK is a central regulator in Drosophila nucleolar stress. Ribosome abundance declines upon Nopp140 loss, but unusual cytoplasmic granules accumulate that resemble Processing (P) bodies based on marker proteins, Decapping Protein 1 (DCP1) and Maternal expression at 31B (Me31B). Wild type brain neuroblasts (NBs) express copious amounts of endogenous coilin, but coilin levels decline upon nucleolar stress in most NB types relative to the Mushroom body (MB) NBs. MB NBs exhibit resilience against nucleolar stress as they maintain normal coilin, Deadpan, and EdU labeling levels.more » « less
An official website of the United States government
