skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Storm time polar cap expansion: interplanetary magnetic field clock angle dependence
Abstract. It is well known that the polar cap, delineated by the open–closed field line boundary (OCB),responds to changes in the interplanetary magnetic field (IMF).In general, the boundary moves equatorward when the IMF turns southward and contractspoleward when the IMF turns northward. However,observations of the OCB are spotty and limited in local time,making more detailed studies of its IMF dependence difficult.Here, we simulate five solar storm periods with the coupled model consisting of the OpenGeospace General Circulation Model (OpenGGCM) coupled with the Coupled Thermosphere IonosphereModel (CTIM) and the Rice Convection Model (RCM),i.e., the OpenGGCM-CTIM-RCM, to estimate the location and dynamics of the OCB.For these events, polar cap boundary location observations are also obtained from Defense MeteorologicalSatellite Program (DMSP) precipitation spectrograms and compared with the model output.There is a large scatter in the DMSP observations and in the model output.Although the model does not predict the OCB with high fidelity for every observation,it does reproduce the general trend as a function of IMF clock angle.On average, the model overestimates the latitude of the open–closed field line boundaryby 1.61∘. Additional analysis of the simulated polar cap boundary dynamics acrossall local times shows that the MLT of the largest polar cap expansion closely correlateswith the IMF clock angle, that the strongest correlation occurs when the IMF is southward, thatduring strong southward IMF the polar cap shifts sunward, and that the polar cap rapidlycontracts at all local times when the IMF turns northward.  more » « less
Award ID(s):
1919310
PAR ID:
10445614
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Annales Geophysicae
Volume:
41
Issue:
1
ISSN:
1432-0576
Page Range / eLocation ID:
39 to 54
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract One of the most significant observations associated with a sharp enhancement in solar wind dynamic pressure,, is the poleward expansion of the auroral oval and the closing of the polar cap. The polar cap shrinking over a wide range of magnetic local times (MLTs), in connection with an observed increase in ionospheric convection and the transpolar potential, led to the conclusion that the nightside reconnection rate is significantly enhanced after a pressure front impact. However, this enhanced tail reconnection has never been directly measured. We demonstrate the effect of a solar wind dynamic pressure front on the polar cap closure, and for the first time, measure the enhanced reconnection rate in the magnetotail, for a case occurring during southward background Interplanetary Magnetic Field (IMF) conditions. We use Polar Ultra‐Violet Imager (UVI) measurements to detect the location of the open‐closed field line boundary, and combine them with Assimilative Mapping of Ionospheric Electrodynamics (AMIE) potentials to calculate the ionospheric electric field along the polar cap boundary, and thus evaluate the variation of the dayside/nightside reconnection rates. We find a strong response of the polar cap boundary at all available MLTs, exhibiting a significant reduction of the open flux content. We also observe an immediate response of the dayside reconnection rate, plus a phased response, delayed by ∼15–20 min, of the nightside reconnection rate. Finally, we provide comparison of the observations with the results of the Open Geospace General Circulation Model (OpenGGCM), elucidating significant agreements and disagreements. 
    more » « less
  2. null (Ed.)
    Abstract. The high-latitude atmosphere is a dynamic region with processes that respond to forcing from the Sun, magnetosphere, neutral atmosphere, andionosphere. Historically, the dominance of magnetosphere–ionosphere interactions has motivated upper atmospheric studies to use magneticcoordinates when examining magnetosphere–ionosphere–thermosphere coupling processes. However, there are significant differences between thedominant interactions within the polar cap, auroral oval, and equatorward of the auroral oval. Organising data relative to these boundaries hasbeen shown to improve climatological and statistical studies, but the process of doing so is complicated by the shifting nature of the auroral ovaland the difficulty in measuring its poleward and equatorward boundaries. This study presents a new set of open–closed magnetic field line boundaries (OCBs) obtained from Active Magnetosphere and Planetary ElectrodynamicsResponse Experiment (AMPERE) magnetic perturbation data. AMPERE observations of field-aligned currents (FACs) are used to determine the location ofthe boundary between the Region 1 (R1) and Region 2 (R2) FAC systems. This current boundary is thought to typically lie a few degrees equatorwardof the OCB, making it a good candidate for obtaining OCB locations. The AMPERE R1–R2 boundaries are compared to the Defense MeteorologicalSatellite Program Special Sensor J (DMSP SSJ) electron energy flux boundaries to test this hypothesis and determine the best estimate of thesystematic offset between the R1–R2 boundary and the OCB as a function of magnetic local time. These calibrated boundaries, as well as OCBsobtained from the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) observations, are validated using simultaneous observations of theconvection reversal boundary measured by DMSP. The validation shows that the OCBs from IMAGE and AMPERE may be used together in statisticalstudies, providing the basis of a long-term data set that can be used to separate observations originating inside and outside of the polar cap. 
    more » « less
  3. Abstract Lobe reconnection is usually thought to play an important role in geospace dynamics only when the Interplanetary Magnetic Field (IMF) is mainly northward. This is because the most common and unambiguous signature of lobe reconnection is the strong sunward convection in the polar cap ionosphere observed during these conditions. During more typical conditions, when the IMF is mainly oriented in a dawn‐dusk direction, plasma flows initiated by dayside and lobe reconnection both map to high‐latitude ionospheric locations in close proximity to each other on the dayside. This makes the distinction of the source of the observed dayside polar cap convection ambiguous, as the flow magnitude and direction are similar from the two topologically different source regions. We here overcome this challenge by normalizing the ionospheric convection observed by the Super Dual Aurora Radar Network (SuperDARN) to the polar cap boundary, inferred from simultaneous observations from the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE). This new method enable us to separate and quantify the relative contribution of both lobe reconnection and dayside/nightside (Dungey cycle) reconnection during periods of dominating IMFBy. Our main findings are twofold. First, the lobe reconnection rate can typically account for 20% of the Dungey cycle flux transport during local summer when IMFByis dominating and IMFBz ≥ 0. Second, the dayside convection relative to the open/closed boundary is vastly different in local summer versus local winter, as defined by the dipole tilt angle. 
    more » « less
  4. Abstract Specific polar cap auroras, such as 15MLT‐PCA, linked to lobe reconnection due to the influence of the interplanetary magnetic field (IMF) Bycomponent, were only observed in the summer. Although the variance in ionospheric conductivity between winter and summer has been proposed as a potential explanation for this seasonal dependency, it has also been argued that the differences in lobe reconnection between the winter and summer hemispheres could be the cause. To address this debate, we examined two data periods with similar IMF conditions when the northern hemisphere was in summer and winter, respectively. Using DMSP/SSUSI and AMPERE observations, we detected clear 15MLT‐PCA and associated field‐aligned currents in the summer, but not in the winter. These observations were compared with global MHD simulations from OpenGGCM. Lobe reconnection signatures were identified for both winter and summer in the simulation results. However, a detailed analysis showed that the pattern of lobe reconnection in the winter hemisphere was different from that in the summer. Based on the combined observation and simulation results, we suggest that particular lobe reconnection in summer is critical for generating 15MLT‐PCA, while the winter's reconnection may lead to transient or small‐scale auroral responses that were not easily identified by DMSP/SSUSI observations as a 15MLT‐PCA event. 
    more » « less
  5. The space hurricane is a newly discovered large-scale three-dimensional magnetic vortex structure that spans the polar ionosphere and magnetosphere. At the height of the ionosphere, it has a strong circular horizontal plasma flow with a nearly zero-flow center and a coincident cyclone-shaped aurora caused by strong electron precipitation associated with intense upward magnetic field-aligned currents. By analyzing the long-term optical observation onboard the Defense Meteorological Satellite Program (DMSP) F16 satellite from 2005 to 2016, we found that space hurricanes in the Northern Hemisphere occur in summer and have a maximum occurrence rate in the afternoon sector around solar maximum. In particular, space hurricanes are more likely to occur in the dayside polar cap at magnetic latitudes greater than 80°, and their MLT (magnetic local time) dependence shows a positive relationship with the IMF (interplanetary magnetic field) clock angle. We also found that space hurricanes occur mainly under dominant positive IMF By and Bz and negative Bx conditions. It is suggested that the stable high-latitude lobe reconnection, which occurs under the conditions of a large Earth’s dipole tilt angle and high ionosphere conductivity in summer, should be the formation mechanism of space hurricanes. The result will give a better understanding of the solar wind–magnetosphere–ionosphere coupling process under northward IMF conditions. 
    more » « less