skip to main content


Title: Lidar Observations of Instability and Estimates of Vertical Eddy Diffusivity Induced by Gravity Wave Breaking in the Arctic Mesosphere
Abstract

On the night of 18–19 October 2018, sodium resonance lidar measurements show the presence of overturning in the mesospheric sodium layer. Two independent tracers, sodium mixing ratio and potential temperature, derived from resonance and Rayleigh lidar measurements, reveal that vertical spreading of the sodium mixing ratio contours and a layer of convective instability coincide with this overturning. Analysis of lidar measurements also reveals the presence of gravity waves that propagate upward, are saturated, and dissipate at the height of the convective instability. The vertical spreading is analyzed in terms of turbulent diffusive transport using a model based on material continuity of sodium. Estimates of the turbulent eddy diffusion coefficient, K, and energy dissipation rate,εare derived from the transport model. The energy dissipated by the gravity waves is also calculated and found to be sufficient to generate the turbulence. We consider three other examples of overturning, instability and spreading on the nights of: 17–18 February 2009, 25–26 January 2015, and 8–9 October 2018. For all four events we find that the values of K (∼1,000 m2/s) are larger and the values ofε(∼10–100 mW/kg) are of similar magnitude to those values typically reported by ionization gauge measurements. These examples also reveal that higher levels of turbulent mixing are consistently found in regions of lower stability.

 
more » « less
Award ID(s):
1753214 1829161 1829138 1734693
NSF-PAR ID:
10445813
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Volume:
126
Issue:
4
ISSN:
2169-897X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We report the first lidar observations of vertical fluxes of sensible heat and meteoric Na from 78 to 110 km in late May 2020 at McMurdo, Antarctica. The measurements include contributions from the complete temporal spectrum of gravity waves and demonstrate that wave‐induced vertical transport associated with atmospheric mixing by non‐breaking gravity waves, Stokes drift imparted by the wave spectrum, and perturbed chemistry of reactive species, can make significant contributions to constituent and heat transport in the mesosphere and lower thermosphere (MLT). The measured sensible heat and Na fluxes exhibit downward peaks at 84 km (−3.0 Kms−1and −5.5 × 104 cm−2s−1) that are ∼4 km lower than the flux peak altitudes observed at midlatitudes. This is likely caused by the strong downwelling over McMurdo in late May. The Na flux magnitude is double the maximum at midlatitudes, which we believe is related to strong persistent gravity waves in the MLT at McMurdo. To achieve good agreement between the measured Na flux and theory, it was necessary to infer that a large fraction of gravity wave energy was propagating downward, especially between 80 and 95 km where the Na flux and wave dissipation were largest. These downward propagating waves are likely secondary waves generated in‐situ by the dissipation of primary waves that originate from lower altitudes. The sensible heat flux transitions from downward below 90 km to upward from 97 to 106 km. The observations are explained with the fully compressible solutions for polarization relations of primary and secondary gravity waves withλz > 10 km.

     
    more » « less
  2. Abstract

    Turbulent mixing in the ocean, lakes and reservoirs facilitates the transport of momentum, heat, nutrients, and other passive tracers. Turbulent fluxes are proportional to the rate of turbulent kinetic energy dissipation per unit mass,ε. A common method forεmeasurements is using microstructure profilers with shear probes. Such measurements are now widespread, and a non-expert practitioner will benefit from best practice guidelines and benchmark datasets. As a part of the Scientific Committee on Oceanographic Research (SCOR) working group on “Analysing ocean turbulence observations to quantify mixing” (ATOMIX), we compiled a collection of five benchmark data ofεfrom measurements of turbulence shear using shear probes. The datasets are processed using the ATOMIX recommendations for best practices documented separately. Here, we describe and validate the datasets. The benchmark collection is from different types of instruments and covers a wide range of environmental conditions. These datasets serve to guide the users to test theirεestimation methods and quality-assurance metrics, and to standardize their data for archiving.

     
    more » « less
  3. Abstract

    The gravity wave drag parametrization of the Whole Atmosphere Community Climate Model (WACCM) has been modified to include the wave‐driven atmospheric vertical mixing caused by propagating, non‐breaking, gravity waves. The strength of this atmospheric mixing is represented in the model via the “effective wave diffusivity” coefficient (Kwave). UsingKwave, a new total dynamical diffusivity (KDyn) is defined.KDynrepresents the vertical mixing of the atmosphere by both breaking (dissipating) and vertically propagating (non‐dissipating) gravity waves. Here we show that, when the new diffusivity is used, the downward fluxes of Fe and Na between 80 and 100 km largely increase. Larger meteoric ablation injection rates of these metals (within a factor 2 of measurements) can now be used in WACCM, which produce Na and Fe layers in good agreement with lidar observations. Mesospheric CO2is also significantly impacted, with the largest CO2concentration increase occurring between 80 and 90 km, where model‐observations agreement improves. However, in regions where the model overestimates CO2concentration, the new parametrization exacerbates the model bias. The mesospheric cooling simulated by the new parametrization, while needed, is currently too strong almost everywhere. The summer mesopause in both hemispheres becomes too cold by about 30 K compared to observations, but it shifts upward, partially correcting the WACCM low summer mesopause. Our results highlight the far‐reaching implications and the necessity of representing vertically propagating non‐breaking gravity waves in climate models. This novel method of modeling gravity waves contributes to growing evidence that it is time to move away from dissipative‐only gravity wave parametrizations.

     
    more » « less
  4. Abstract

    Pacific Summer Water eddies and intrusions transport heat and salt from boundary regions into the western Arctic basin. Here we examine concurrent effects of lateral stirring and vertical mixing using microstructure data collected within a Pacific Summer Water intrusion with a length scale of ∼20 km. This intrusion was characterized by complex thermohaline structure in which warm Pacific Summer Water interleaved in alternating layers ofm thickness with cooler water, due to lateral stirring and intrusive processes. Along interfaces between warm/salty and cold/freshwater masses, the density ratio was favorable to double-diffusive processes. The rate of dissipation of turbulent kinetic energy (ε) was elevated along the interleaving surfaces, with values up to 3 × 10−8W kg−1compared to backgroundεof less than 10−9W kg−1. Based on the distribution ofεas a function of density ratioRρ, we conclude that double-diffusive convection is largely responsible for the elevatedεobserved over the survey. The lateral processes that created the layered thermohaline structure resulted in vertical thermohaline gradients susceptible to double-diffusive convection, resulting in upward vertical heat fluxes. Bulk vertical heat fluxes above the intrusion are estimated in the range of 0.2–1 W m−2, with the localized flux above the uppermost warm layer elevated to 2–10 W m−2. Lateral fluxes are much larger, estimated between 1000 and 5000 W m−2, and set an overall decay rate for the intrusion of 1–5 years.

     
    more » « less
  5. Abstract. A narrow-band sodium lidar provides high temporal and vertical resolution observations of sodium density, atmospheric temperature, and wind that facilitate the investigation of atmospheric waves in the mesosphere and lower thermosphere (80–105 km). In order to retrieve full vector winds, such a lidar is usually configured in a multi-direction observing mode, with laser beams pointing to the zenith and several off-zenith directions. Gravity wave events were observed by such a lidar system from 06:30 to 11:00 UT on 14 January 2002 at Maui, Hawaii (20.7° N, 156.3° W). A novel method based on cross-spectrum was proposed to derive the horizontal wave information from the phase shifts among measurements in different directions. At least two wave packets were identified using this method: one with a period of ∼ 1.6 h, a horizontal wavelength of ∼ 438 km, and propagating toward the southwest; and the other one with a ∼ 3.2 h period, a ∼ 934 km horizontal wavelength, and propagating toward the northwest. The background atmosphere states were also fully measured and all intrinsic wave properties of the wave packets were derived. Dispersion and polarization relations were used to diagnose wave propagation and dissipation. It was revealed that both wave packets propagate through multiple thin evanescent layers and are possibly partially reflected but still get a good portion of energy to penetrate higher altitudes. A sensitivity study demonstrates the capability of this method in detecting medium-scale and medium-frequency gravity waves. With continuous and high-quality measurements from similar lidar systems worldwide, this method can be utilized to detect and study the characteristics of gravity waves of specific spatiotemporal scales.

     
    more » « less