skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Probabilistic Near‐Field Tsunami Source and Tsunami Run‐up Distribution Inferred From Tsunami Run‐up Records in Northern Chile
Abstract Understanding a tsunami source and its impact is vital to assess a tsunami hazard. Thanks to the efforts of the tsunami survey teams, high‐quality tsunami run‐up data exist for contemporary events. Still, it has not been widely used to infer a tsunami source and its impact mainly due to the computational burden of the tsunami forward model. In this study, we propose a TRRF‐INV (Tsunami Run‐up Response Function‐based INVersion) model that can provide probabilistic estimates of a near‐field tsunami source and tsunami run‐up distribution from a small number of run‐up records. We tested the TRRF‐INV model with synthetic tsunami scenarios in northern Chile and applied it to the 2014 Iquique, Chile, tsunami event as a case study. The results demonstrated that the TRRF‐INV model can provide a reasonable tsunami source estimate to first order and estimate tsunami run‐up distribution well. Moreover, the case‐study results agree well with the United States Geological Survey report and the global Centroid Moment Tensor solution. We also analyzed the performance of the TRRF‐INV model depending on the number and the uncertainty of run‐up records. We believe that the TRRF‐INV model has the potential for supporting accurate hazard assessment by (1) providing new insights from tsunami run‐up records into the tsunami source and its impact, (2) using the TRRF‐INV model as a tool to support existing tsunami inversion models, and (3) estimating a tsunami source and its impact for ancient events where no data other than estimated run‐up from sediment deposit data exist.  more » « less
Award ID(s):
1735139 1630099
PAR ID:
10445818
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Oceans
Volume:
126
Issue:
6
ISSN:
2169-9275
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The hazard from earthquake-generated tsunami waves is not only determined by the earthquake’s magnitude and mechanisms, and distance to the earthquake area, but also by the geomorphology of the nearshore and onshore areas, which can change over time. In coastal hazard assessments, a changing coastal environment is commonly taken into account by increasing the sea-level to projected values (static). However, sea-level changes and other climate-change impacts influence the entire coastal system causing morphological changes near- and onshore (dynamic). We compare the run-up of the same suite of earthquake-generated tsunamis to a barrier island-marsh-lagoon-marsh system for statically adjusted and dynamically adjusted sea level and bathymetry. Sea-level projections from 2000 to 2100 are considered. The dynamical adjustment is based on a morphokinetic model that incorporates sea-level along with other climate-change impacts. We employ Representative Concentration Pathways 2.6 and 8.5 without and with treatment of Antarctic Ice-sheet processes (known as K14 and K17) as different sea-level projections. It is important to note that we do not account for the occurrence probability of the earthquakes. Our results indicate that the tsunami run-up hazard for the dynamic case is approximately three times larger than for the static case. Furthermore, we show that nonlinear and complex responses of the barrier island-marsh-lagoon-marsh system to climate change profoundly impacts the tsunami hazard, and we caution that the tsunami run-up is sensitive to climate-change impacts that are less well-studied than sea-level rise. 
    more » « less
  2. Abstract Models of bathymetry derived from satellite radar altimetry are essential for modeling many marine processes. They are affected by uncertainties which require quantification. We propose an uncertainty model that assumes errors are caused by the lack of high‐wavenumber content within the altimetry data. The model is then applied to a tsunami hazard assessment. We build a bathymetry uncertainty model for northern Chile. Statistical properties of the altimetry‐predicted bathymetry error are obtained using multibeam data. We find that a Von Karman correlation function and a Laplacian marginal distribution can be used to define an uncertainty model based on a random field. We also propose a method for generating synthetic bathymetry samples conditional to shipboard measurements. The method is further extended to account for interpolation uncertainties, when bathymetry data resolution is finer than∼10 km. We illustrate the usefulness of the method by quantifying the bathymetry‐induced uncertainty of a tsunami hazard estimate. We demonstrate that tsunami leading wave predictions at middle/near field tide gauges and buoys are insensitive to bathymetry uncertainties in Chile. This result implies that tsunami early warning approaches can take full advantage of altimetry‐predicted bathymetry in numerical simulations. Finally, we evaluate the feasibility of modeling uncertainties in regions without multibeam data by assessing the bathymetry error statistics of 15 globally distributed regions. We find that a general Von Karman correlation and a Laplacian marginal distribution can serve as a first‐order approximation. The standard deviation of the uncertainty random field model varies regionally and is estimated from a proposed scaling law. 
    more » « less
  3. Abstract On Dec. 22, 2018, at approximately 20:55–57 local time, Anak Krakatau volcano, located in the Sunda Straits of Indonesia, experienced a major lateral collapse during a period of eruptive activity that began in June. The collapse discharged volcaniclastic material into the 250 m deep caldera southwest of the volcano, which generated a tsunami with runups of up to 13 m on the adjacent coasts of Sumatra and Java. The tsunami caused at least 437 fatalities, the greatest number from a volcanically-induced tsunami since the catastrophic explosive eruption of Krakatau in 1883 and the sector collapse of Ritter Island in 1888. For the first time in over 100 years, the 2018 Anak Krakatau event provides an opportunity to study a major volcanically-generated tsunami that caused widespread loss of life and significant damage. Here, we present numerical simulations of the tsunami, with state-of the-art numerical models, based on a combined landslide-source and bathymetric dataset. We constrain the geometry and magnitude of the landslide source through analyses of pre- and post-event satellite images and aerial photography, which demonstrate that the primary landslide scar bisected the Anak Krakatau volcano, cutting behind the central vent and removing 50% of its subaerial extent. Estimated submarine collapse geometries result in a primary landslide volume range of 0.22–0.30 km3, which is used to initialize a tsunami generation and propagation model with two different landslide rheologies (granular and fluid). Observations of a single tsunami, with no subsequent waves, are consistent with our interpretation of landslide failure in a rapid, single phase of movement rather than a more piecemeal process, generating a tsunami which reached nearby coastlines within ~30 minutes. Both modelled rheologies successfully reproduce observed tsunami characteristics from post-event field survey results, tide gauge records, and eyewitness reports, suggesting our estimated landslide volume range is appropriate. This event highlights the significant hazard posed by relatively small-scale lateral volcanic collapses, which can occuren-masse, without any precursory signals, and are an efficient and unpredictable tsunami source. Our successful simulations demonstrate that current numerical models can accurately forecast tsunami hazards from these events. In cases such as Anak Krakatau’s, the absence of precursory warning signals together with the short travel time following tsunami initiation present a major challenge for mitigating tsunami coastal impact. 
    more » « less
  4. Tsunamigenic megathrust earthquakes along the Cascadia subduction zone present a major hazard concern. We can better prepare to model the earthquake source in a rapid manner by imbuing fault geometry constraints based on prior knowledge and by evaluating the capabilities of using existing GNSS sensors. Near-field GNSS waveforms have shown promise in providing rapid coarse finite-fault model approximations of the earthquake rupture that can improve tsunami modeling and response time. In this study, we explore the performance of GNSS derived finite-fault inversions and tsunami forecasting predictions in Cascadia that highlights the impact and potential of geodetic techniques and data in operational earthquake and tsunami monitoring. We utilized 1300 Cascadia earthquake simulations (FakeQuakes) that provide realistic (M7.5-9.3) rupture scenarios to assess how feasibly finite-fault models can be obtained in a rapid earthquake early warning and tsunami response context. A series of fault models with rectangular dislocation patches spanning the Cascadia megathrust area is added to the GFAST inversion algorithm to calculate slip for each earthquake scenario. Another method used to constrain the finite-fault geometry is from the GNSS-derived CMT fault plane solution. For the Cascadia region, we show that fault discretization using two rectangular segments approximating the megathrust portion of the subduction zone leads to improvements in modeling magnitude, fault slip, tsunami amplitude, and inundation. In relation to tsunami forecasting capabilities, we compare coastal amplitude predictions spanning from Vancouver Island (Canada) to Northern California (USA). Generally, the coastal amplitudes derived using fault parameters from the CMT solutions show an overestimation bias compared to amplitudes derived from the fixed slab model. We also see improved prediction values of the run-up height and maximum amplitude at 10 tide gauge stations using the fixed slab model as well. 
    more » « less
  5. Abstract We demonstrate the efficacy of a Bayesian statistical inversion framework for reconstructing the likely characteristics of large pre‐instrumentation earthquakes from historical records of tsunami observations. Our framework is designed and implemented for the estimation of the location and magnitude of seismic events from anecdotal accounts of tsunamis including shoreline wave arrival times, heights, and inundation lengths over a variety of spatially separated observation locations. The primary advantage of this approach is that all of the assumptions made in the inversion process are incorporated explicitly into the mathematical framework. As an initial test case we use our framework to reconstruct the great 1852 earthquake and tsunami of eastern Indonesia. Relying on the assumption that these observations were produced by a subducting thrust event, the posterior distribution indicates that the observables were the result of a massive mega‐thrust event with magnitude near 8.8 Mw and a likely rupture zone in the north‐eastern Banda arc. The distribution of predicted epicentral locations overlaps with the largest major seismic gap in the region as indicated by instrumentally recorded seismic events. These results provide a geologic and seismic context for hazard risk assessment in coastal communities experiencing growing population and urbanization in Indonesia. In addition, the methodology demonstrated here highlights the potential for applying a Bayesian approach to enhance understanding of the seismic history of other subduction zones around the world. 
    more » « less