skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tuza's conjecture for random graphs
Abstract A celebrated conjecture of Tuza says that in any (finite) graph, the minimum size of a cover of triangles by edges is at most twice the maximum size of a set of edge‐disjoint triangles. Resolving a recent question of Bennett, Dudek, and Zerbib, we show that this is true for random graphs; more precisely:urn:x-wiley:rsa:media:rsa21057:rsa21057-math-0001  more » « less
Award ID(s):
1954035
PAR ID:
10446284
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Random Structures & Algorithms
Volume:
61
Issue:
2
ISSN:
1042-9832
Page Range / eLocation ID:
p. 235-249
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We investigated competition betweenSalpa thompsoniand protistan grazers during Lagrangian experiments near the Subtropical Front in the southwest Pacific sector of the Southern Ocean. Over a month, the salp community shifted from dominance by large (> 100 mm) oozooids and small (< 20 mm) blastozooids to large (~ 60 mm) blastozooids. Phytoplankton biomass was consistently dominated by nano‐ and microphytoplankton (> 2 μm cells). Using bead‐calibrated flow‐cytometry light scatter to estimate phytoplankton size, we quantified size‐specific salp and protistan zooplankton grazing pressure. Salps were able to feed at a > 10,000 : 1 predator : prey size (linear‐dimension) ratio. Small blastozooids efficiently retained cells > 1.4μm (high end of picoplankton size, 0.6–2 μm cells) and also obtained substantial nutrition from smaller bacteria‐sized cells. Larger salps could only feed efficiently on > 5.9μm cells and were largely incapable of feeding on picoplankton. Due to the high biomass of nano‐ and microphytoplankton, however, all salps derived most of their (phytoplankton‐based) nutrition from these larger autotrophs. Phagotrophic protists were the dominant competitors for these prey items and consumed approximately 50% of the biomass of all phytoplankton size classes each day. Using a Bayesian statistical framework, we developed an allometric‐scaling equation for salp clearance rates as a function of salp and prey size:urn:x-wiley:00243590:media:lno11770:lno11770-math-0001where ESD is prey equivalent spherical diameter (µm), TL isS. thompsonitotal length,φ = 5.6 × 10−3 ± 3.6 × 10−4,ψ = 2.1 ± 0.13,θ = 0.58 ± 0.08, andγ = 0.46 ± 0.03 and clearance rate is L d‐1salp‐1. We discuss the biogeochemical and food‐web implications of competitive interactions among salps, krill, and protozoans. 
    more » « less
  2. Abstract We report the Earth's rate of radiogenic heat production and (anti)neutrino luminosity from geologically relevant short‐lived radionuclides (SLR) and long‐lived radionuclides (LLR) using decay constants from the geological community, updated nuclear physics parameters, and calculations of theβspectra. We track the time evolution of the radiogenic power and luminosity of the Earth over the last 4.57 billion years, assuming an absolute abundance for the refractory elements in the silicate Earth and key volatile/refractory element ratios (e.g., Fe/Al, K/U, and Rb/Sr) to set the abundance levels for the moderately volatile elements. The relevant decays for the present‐day heat production in the Earth (19.9 ± 3.0 TW) are from40K,87Rb,147Sm,232Th,235U, and238U. Given element concentrations in kg‐element/kg‐rock and densityρin kg/m3, a simplified equation to calculate the present‐day heat production in a rock isurn:x-wiley:ggge:media:ggge22244:ggge22244-math-0001 The radiogenic heating rate of Earth‐like material at solar system formation was some 103to 104times greater than present‐day values, largely due to decay of26Al in the silicate fraction, which was the dominant radiogenic heat source for the first∼10 Ma. Assuming instantaneous Earth formation, the upper bound on radiogenic energy supplied by the most powerful short‐lived radionuclide26Al (t1/2= 0.7 Ma) is 5.5×1031 J, which is comparable (within a factor of a few) to the planet's gravitational binding energy. 
    more » « less
  3. Abstract MXenes, a new class of 2D transition metal carbides, nitrides, and carbonitrides, have attracted much attention due to their outstanding properties. Here, we report the broadband spatial self‐phase modulation of Ti2CTxMXene nanosheets dispersed in deionized water in the visible to near‐infrared regime, highlighting the broadband nonlinear optical (NLO) response of Ti2CTxMXene. Using ultrafast pulsed laser excitation, the nonlinear refractive indexn2and the third‐order nonlinear susceptibilityof Ti2CTxMXene were measured to be ∼10−13m2/W and ∼ 10−10esu, respectively. Leveraging the large optical nonlinearity of Ti2CTxMXene, an all‐optical modulator in the visible regime was fabricated based on the spatial cross‐phase modulation effect. This work suggests that 2D MXenes are ideal broadband NLO materials with excellent prospects in NLO applications. image 
    more » « less
  4. Abstract Avalanche photodiodes fabricated from AlInAsSb grown as a digital alloy exhibit low excess noise. In this article, we investigate the band structure‐related mechanisms that influence impact ionization. Band‐structures calculated using an empirical tight‐binding method and Monte Carlo simulations reveal that the mini‐gaps in the conduction band do not inhibit electron impact ionization. Good agreement between the full band Monte Carlo simulations and measured noise characteristics is demonstrated. image 
    more » « less
  5. Abstract A Rh(II)/Au(I) catalyzed carbene cascade approach for the stereoselective synthesis of diverse spirocarbocycles is described. The cascade reaction involves a rhodium carbene initiatedsp2C−H functionalization followed by a gold catalyzed Conia‐ene cyclization. The cascade reaction accommodates a variety of aryl substituents as well as ring sizes and proceeds with high diastereoselectivity providing access to diverse spirocarbocycles. magnified image 
    more » « less