skip to main content


Title: An efficient DC‐DC converter for inductive power transfer in low‐power sensor applications
Summary

Inductive power transfer has become an emerging technology for its significant benefits in many applications, including mobile phones, laptops, electric vehicles, implanted bio‐sensors, and internet of things (IoT) devices. In modern applications, a direct current–direct current (DC–DC) converter is one of the essential components to regulate the output supply voltage for achieving the desired characteristics, that is, steady voltage with lower peak ripples. This paper presents a switched‐capacitor (SC) DC–DC converter using complementary architecture to provide a regulated DC voltage with an increased dynamic response. The proposed topology enhances the converter efficiency by decreasing the equivalent output resistance to half by connecting two symmetric SC single ladder converters. The proposed converter is designed using the standard 130‐nm BiCMOS process. The results show that the proposed architecture produces 327‐mV DC output with a rise time of 60.1 ns and consumes 3.449‐nW power for 1.0‐V DC supply. The output settling time is 43.6% lower than the single‐stage SC DC–DC converter with an input frequency of 200 MHz. The comparison results show that the proposed converter has a higher power conversion efficiency of 93.87%and a lower power density of 0.57 mW/mm2compared to the existing works.

 
more » « less
Award ID(s):
1813949
NSF-PAR ID:
10446398
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
International Journal of Circuit Theory and Applications
Volume:
50
Issue:
8
ISSN:
0098-9886
Format(s):
Medium: X Size: p. 2887-2899
Size(s):
["p. 2887-2899"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Although tip‐enhanced tribo‐tunneling in metal/semiconductor point nanocontact is capable of producing DC with high current density, scaling up the process for power harvesting for practical applications is challenging due to the complexity of tip array fabrication and insufficient voltage output. Here, it is demonstrated that mechanical contact between a carbon aerogel and silicon (SiO2/Si) interface naturally forms multiple nanocontacts for tribo‐tunneling current generation with an open‐circuit voltage output (VOC) reaching 2 V, and short‐circuit DC current output (ISC) of ≈15 µA. It has a theoretical current density ( J*) on the order of 100 A m−2. Molecular dynamics simulation and atomistic field theory show that a strong localized electronic excitation can be induced at a dynamic carbon/SiO2sliding interface, which is in good agreement with the experimental results. The DC power output is enhanced by the intense local pressure at the presence of nanocontacts, as well as the increased sliding velocityv. To demonstrate the method for practical applications, light‐emitting diodes (LEDs) with different colors are successfully lighted by a single‐carbon aerogel monolith/SiO2sliding unit, and the DC electricity is stored in a capacitor without an additional rectification circuit.

     
    more » « less
  2. null (Ed.)
    This paper presents the integration of an AC-DC rectifier and a DC-DC boost converter circuit designed in 180 nm CMOS process for ultra-low frequency (<; 10 Hz) energy harvesting applications. The proposed rectifier is a very low voltage CMOS rectifier circuit that rectifies the low-frequency signal of 100-250 mV amplitude and 1-10 Hz frequency into DC voltage. In this work, the energy is harvested from the REWOD (reverse electrowetting-on-dielectric) generator, which is a reverse electrowetting technique that converts mechanical vibrations to electrical energy. The objective is to develop a REWOD-based self-powered motion (such as walking, running, jogging, etc.) tracking sensors that can be worn, thus harvesting energy from regular activities. To this end, the proposed circuits are designed in such a way that the output from the REWOD is rectified and regulated using a DC-DC converter which is a 5-stage cross-coupled switching circuit. Simulation results show a voltage range of 1.1 V-2.1 V, i.e., 850-1200% voltage conversion efficiency (VCE) and 30% power conversion efficiency (PCE) for low input signal in the range 100-250 mV in the low-frequency range. This performance verifies the integration of the rectifier and DC-DC boost converter which makes it highly suitable for various motion-based energy harvesting applications. 
    more » « less
  3. null (Ed.)
    Efficient high-conversion-ratio power delivery is needed for many portable computing applications which require sub-volt supply rails but operate from batteries or USB power sources. In such applications, the power management unit should have a small volume, area, and height while providing fast transient response. Past work has shown favorable performance of hybrid switched-capacitor (SC) converters to reduce the size of needed inductor(s), which can soft-charge high-density SC networks while supporting efficient voltage regulation [1-5]. However, the hybrid approach has its own challenges including balancing the voltage of the flying capacitor and achieving safe but fast startup. Rapid supply transients, including startup, can cause voltage stress on power switches if flying capacitors are not quickly regulated. Past approaches such as precharge networks [3] or fast balancing control [5] have startup times that are on the order of milliseconds. This paper presents a two-stage cascaded hybrid SC converter that features a fast transient response with automatic flying capacitor balancing for low-voltage applications (i.e., 5V:0.4 to 1.2V from a USB interface). The converter is nearly standalone and all gate drive supplies are generated internally. Measured results show a peak efficiency of 96.9%, <; 36mV under/overshoot for 1A/μs load transients, and self-startup time on the order of 10μs (over 100× faster than previous works). 
    more » « less
  4. null (Ed.)
    A high-voltage-gain dc-dc converter topology is proposed for renewable energy applications. The proposed coupled-inductor-based high-gain dc-dc converter features reduced input current ripple. The semiconductor elements voltage spikes due to the leakage inductance are prevented through the use of a clamping circuit. The Clamping circuit helps recover the leakage inductance stored energy, which causes voltage spikes on the switch. This results in the selection of elements with lower voltage ratings. Power switches with lower voltage ratings lead to lower conduction losses and improved system efficiency. The DC component of the inductor magnetizing current is zero. Consequently, no energy is stored in the inductor core, and the losses are further reduced. 
    more » « less
  5. This paper proposes a complementary topology for Switched-Capacitor (SC) DC-DC converter to enhance the dynamic response. For battery charging unit with faster charging time requirement, one of the major restrictions comes from the equivalent output resistance of the SC DC-DC converter. By connecting one completely symmetric SC converter as complementary topology with the original single converter, the proposed SC DC-DC converter topology decreases the equivalent output resistance down to half. Simulated in 0.13-μm standard CMOS process, the simulation results show that this complementary SC converter gains faster dynamic response, shorter charging time, and higher energy-conversion efficiency. 
    more » « less