skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Investigating protein translocation in the presence of an electrolyte concentration gradient across a solid‐state nanopore
Abstract Electrolyte chemistry plays an important role in the transport properties of analytes through nanopores. Here, we report the translocation properties of the protein human serum transferrin (hSTf) in asymmetric LiCl salt concentrations with either positive (Ctrans/Ccis< 1) or negative chemical gradients (Ctrans/Ccis> 1). Thecisside concentration was fixed at 4 M for positive chemical gradients and at 0.5 M LiCl for negative chemical gradients, while thetransside concentration varied between 0.5 to 4 M which resulted in six different configurations, respectively, for both positive and negative gradient types. For positive chemical gradient conditions, translocations were observed in all six configurations for at least one voltage polarity whereas with negative gradient conditions, dead concentrations where no events at either polarity were observed. The flux of Li+and Clions and their resultant cation or anion enrichment zones, as well as the interplay of electrophoretic and electroosmotic transport directions, would determine whether hSTf can traverse across the pore.  more » « less
Award ID(s):
2022374 2022398
PAR ID:
10446409
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
ELECTROPHORESIS
Volume:
43
Issue:
5-6
ISSN:
0173-0835
Format(s):
Medium: X Size: p. 785-792
Size(s):
p. 785-792
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Nanopore probing of molecular level transport of proteins is strongly influenced by electrolyte type, concentration, and solution pH. As a result, electrolyte chemistry and applied voltage are critical for protein transport and impact, for example, capture rate ( C R ), transport mechanism ( i.e. , electrophoresis, electroosmosis or diffusion), and 3D conformation ( e.g. , chaotropic vs. kosmotropic effects). In this study, we explored these using 0.5–4 M LiCl and KCl electrolytes with holo-human serum transferrin (hSTf) protein as the model protein in both low (±50 mV) and high (±400 mV) electric field regimes. Unlike in KCl, where events were purely electrophoretic, the transport in LiCl transitioned from electrophoretic to electroosmotic with decreasing salt concentration while intermediate concentrations ( i.e. , 2 M and 2.5 M) were influenced by diffusion. Segregating diffusion-limited capture rate ( R diff ) into electrophoretic ( R diff,EP ) and electroosmotic ( R diff,EO ) components provided an approach to calculate the zeta-potential of hSTf ( ζ hSTf ) with the aid of C R and zeta potential of the nanopore surface ( ζ pore ) with ( ζ pore – ζ hSTf ) governing the transport mechanism. Scrutinization of the conventional excluded volume model revealed its shortcomings in capturing surface contributions and a new model was then developed to fit the translocation characteristics of proteins. 
    more » « less
  2. Abstract Structures at serine‐proline sites in proteins were analyzed using a combination of peptide synthesis with structural methods and bioinformatics analysis of the PDB. Dipeptides were synthesized with the proline derivative (2S,4S)‐(4‐iodophenyl)hydroxyproline [hyp(4‐I‐Ph)]. The crystal structure of Boc‐Ser‐hyp(4‐I‐Ph)‐OMe had two molecules in the unit cell. One molecule exhibitedcis‐proline and a type VIa2 β‐turn (BcisD). Thecis‐proline conformation was stabilized by a C–H/O interaction between Pro C–Hαand the Ser side‐chain oxygen. NMR data were consistent with stabilization ofcis‐proline by a C–H/O interaction in solution. The other crystallographically observed molecule hadtrans‐Pro and both residues in the PPII conformation. Two conformations were observed in the crystal structure of Ac‐Ser‐hyp(4‐I‐Ph)‐OMe, with Ser adopting PPII in one and the β conformation in the other, each with Pro in the δ conformation andtrans‐Pro. Structures at Ser‐Pro sequences were further examined via bioinformatics analysis of the PDB and via DFT calculations. Ser‐Pro versus Ala–Pro sequences were compared to identify bases for Ser stabilization of local structures. C–H/O interactions between the Ser side‐chain Oγand Pro C–Hαwere observed in 45% of structures with Ser‐cis‐Pro in the PDB, with nearly all Ser‐cis‐Pro structures adopting a type VI β‐turn. 53% of Ser‐trans‐Pro sequences exhibited main‐chain COi•••HNi+3or COi•••HNi+4hydrogen bonds, with Ser as theiresidue and Pro as thei + 1 residue. These structures were overwhelmingly either type I β‐turns or N‐terminal capping motifs on α‐helices or 310‐helices. These results indicate that Ser‐Pro sequences are particularly potent in favoring these structures. In each, Ser is in either the PPII or β conformation, with the Ser Oγcapable of engaging in a hydrogen bond with the amide N–H of thei + 2 (type I β‐turn or 310‐helix; Serχ1t) ori + 3 (α‐helix; Serχ1g+) residue. Non‐prolinecisamide bonds can also be stabilized by C–H/O interactions. 
    more » « less
  3. Abstract The metallicity of galaxies, and its variation with galactocentric radius, provides key insights into the formation histories of galaxies and the physical processes driving their evolution. In this work, we analyze the radial metallicity gradients of star-forming galaxies in the EAGLE, Illustris, IllustrisTNG, and SIMBA cosmological simulations across broad mass (108.0M≤M ≲ 1012.0M) and redshift (0 ≤z≤ 8) ranges. We find that all simulations predict strong negative (i.e., radially decreasing) metallicity gradients at early cosmic times, likely due to their similar treatments of relatively smooth stellar feedback not providing sufficient mixing to quickly flatten gradients. The strongest redshift evolution occurs in galaxies with stellar masses of 1010.0–1011.0M, while galaxies with stellar mass < 1010Mand >1011Mexhibit weaker redshift evolution. Our result of negative gradients at high redshift contrast with the many positive and flat gradients in the 1 < z < 4 observational literature. Atz > 6, the negative gradients observed with JWST and the Atacama Large Millimeter/submillimeter Array are flatter than those in simulations, albeit with closer agreement than at lower redshift. Overall, we suggest that these smooth stellar feedback galaxy simulations may not sufficiently mix their metal content radially, and that either stronger stellar feedback or additional subgrid turbulent metal diffusion models may be required to better reproduce observed metallicity gradients. 
    more » « less
  4. Abstract Comparisons of high‐resolution extended range CCN spectra measured at 100 m altitude with cloud and drizzle microphysics in the Rain in Cumulus over the Ocean (RICO) aircraft field project are presented. CCN concentrations,NCCN, active at supersaturations,S, >0.1% showed positive relationships with cloud droplet concentrations,Nc, measured at intermediate (606–976 m) and very high altitudes (1,763–3,699 m). These correlation coefficients,R, progressively increased withSwhile the two‐tailed probabilities, P2, progressively decreased with S to < 10−6at 1.6%S. More important were the positive relationships betweenNCCNactive atS < 0.1% and drizzle drop concentrations,Nd, at high (977–1,662 m), very high and high‐very high altitudes combined (977–3,699 m). All of these relationships were consistent for eight different cloud liquid water content,Lc, thresholds (forNc) andLcbins (forNd) ranging from 0.0002 to 0.3 g/m3. Negative relationships between CCN modality and low altitude (76–475 m) cloudiness coupled with no relationship ofNCCNactive at any S withNcof these low clouds indicated a cloud effect on ambient aerosol. This is a demonstration of clouds causing bimodal aerosol. 
    more » « less
  5. Abstract New acceptor‐type graphite intercalation compounds (GICs) offer candidates of cathode materials for dual‐ion batteries (DIBs), where superhalides represent the emerging anion charge carriers for such batteries. Here, the reversible insertion of [LiCl2]into graphite from an aqueous deep eutectic solvent electrolyte of 20mLiCl+20mcholine chloride is reported. [LiCl2]is the primary anion species in this electrolyte as revealed by the femtosecond stimulated Raman spectroscopy results, particularly through the rarely observed H–O–H bending mode. The insertion of Li–Cl anionic species is suggested by7Li magic angle spinning nuclear magnetic resonance results that describe a unique chemical environment of Li+ions with electron donors around.2H nuclear magnetic resonance results suggest that water molecules are co‐inserted into graphite. Density functional theory calculations reveal that the anionic insertion of hydrated [LiCl2]takes place at a lower potential, being more favorable. X‐ray diffraction and the Raman results show that the insertion of [LiCl2]creates turbostratic structure in graphite instead of forming long‐range ordered GICs. The storage of [LiCl2]in graphite as a cathode for DIBs offers a capacity of 114 mAh g−1that is stable over 440 cycles. 
    more » « less