skip to main content


Search for: All records

Award ID contains: 2022398

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Electrolyte chemistry plays an important role in the transport properties of analytes through nanopores. Here, we report the translocation properties of the protein human serum transferrin (hSTf) in asymmetric LiCl salt concentrations with either positive (Ctrans/Ccis< 1) or negative chemical gradients (Ctrans/Ccis> 1). Thecisside concentration was fixed at 4 M for positive chemical gradients and at 0.5 M LiCl for negative chemical gradients, while thetransside concentration varied between 0.5 to 4 M which resulted in six different configurations, respectively, for both positive and negative gradient types. For positive chemical gradient conditions, translocations were observed in all six configurations for at least one voltage polarity whereas with negative gradient conditions, dead concentrations where no events at either polarity were observed. The flux of Li+and Clions and their resultant cation or anion enrichment zones, as well as the interplay of electrophoretic and electroosmotic transport directions, would determine whether hSTf can traverse across the pore.

     
    more » « less
  2. Abstract

    Recently, we developed a fabrication method—chemically‐tuned controlled dielectric breakdown (CT‐CDB)—that produces nanopores (through thin silicon nitride membranes) surpassing legacy drawbacks associated with solid‐state nanopores (SSNs). However, the noise characteristics of CT‐CDB nanopores are largely unexplored. In this work, we investigated the 1/fnoise of CT‐CDB nanopores of varying solution pH, electrolyte type, electrolyte concentration, applied voltage, and pore diameter. Our findings indicate that the bulk Hooge parameter (αb) is about an order of magnitude greater than SSNs fabricated by transmission electron microscopy (TEM) while the surface Hooge parameter (αs) is ∼3 order magnitude greater. Theαsof CT‐CDB nanopores was ∼5 orders of magnitude greater than theirαb, which suggests that the surface contribution plays a dominant role in 1/fnoise. Experiments with DNA exhibited increasing capture rates with pH up to pH ∼8 followed by a drop at pH ∼9 perhaps due to the onset of electroosmotic force acting against the electrophoretic force. The1/fnoise was also measured for several electrolytes and LiCl was found to outperform NaCl, KCl, RbCl, and CsCl. The 1/fnoise was found to increase with the increasing electrolyte concentration and pore diameter. Taken together, the findings of this work suggest the pH approximate 7–8 range to be optimal for DNA sensing with CT‐CDB nanopores.

     
    more » « less
  3. Bimodal optical-electrical data generated when a 20 nm diameter silica (SiO2) nanoparticle was trapped by a plasmonic nanopore sensor were simulated using Multiphysics COMSOL and compared with sensor measurements for closely matching experimental parameters. The nanosensor, employed self-induced back action (SIBA) to optically trap nanoparticles in the center of a double nanohole (DNH) structure on top a solid-state nanopores (ssNP). This SIBA actuated nanopore electrophoresis (SANE) sensor enables simultaneous capture of optical and electrical data generated by several underlying forces acting on the trapped SiO2 nanoparticle: plasmonic optical trapping, electroosmosis, electrophoresis, viscous drag, and heat conduction forces. The Multiphysics simulations enabled dissecting the relative contributions of those forces acting on the nanoparticle as a function of its location above and through the sensor’s ssNP. Comparisons between simulations and experiments demonstrated qualitative similarities in the optical and electrical time-series data generated as the nanoparticle entered and exited from the SANE sensor. These experimental parameter-matched simulations indicated that the competition between optical and electrical forces shifted the trapping equilibrium position close to the top opening of the ssNP, relative to the optical trapping force maximum that was located several nm above. The experimentally estimated minimum for the optical force needed to trap a SiO2 nanoparticle was consistent with corresponding simulation predictions of optical-electrical force balance. The comparison of Multiphysics simulations with experiments improves our understanding of the interplay between optical and electrical forces as a function of nanoparticle position across this plasmonic nanopore sensor. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  4. Vo-Dinh, Tuan ; Ho, Ho-Pui A. ; Ray, Krishanu (Ed.)
    Alternating current (AC) modulation of command voltage applied across a Self-induced Back Action Actuated Nanopore Electrophoresis (SANE) sensor, a type of plasmonic nanopore sensor that we have developed previously, enables acquisition of new data types that could potentially enhance the characterization of nanoparticles (NPs) and single molecules. In particular, AC voltage frequency response provides insight into the charge and dielectric constant of analytes that are normally obfuscated using DC command voltages. We first analyzed Axopatch 200B data to map the frequency response of the empty SANE sensor in terms of phase shift and amplitude modulation, with and without plasmonic excitation. We then tested the frequency response of 20 nm diameter silica NPs and 20 nm gold NPs trapped optically, which made these particles hover over an underlying 25 nm nanopore at the center of the SANE sensor. By applying a DC command voltage with a superimposed AC frequency sweep while keeping the NPs optically trapped in the vicinity of the nanopores’s entrance, we have found that silica and gold NPs to have distinctly different electrical responses. This pilot work demonstrates the feasibility of performing AC measurements with a plasmonic nanopore, which encourages us to pursue more detailed characterization studies with NPs and single molecules in future work. 
    more » « less
  5. Vo-Dinh, Tuan ; Ho, Ho-Pui A. ; Ray, Krishanu (Ed.)
  6. null (Ed.)
    Nanopore probing of molecular level transport of proteins is strongly influenced by electrolyte type, concentration, and solution pH. As a result, electrolyte chemistry and applied voltage are critical for protein transport and impact, for example, capture rate ( C R ), transport mechanism ( i.e. , electrophoresis, electroosmosis or diffusion), and 3D conformation ( e.g. , chaotropic vs. kosmotropic effects). In this study, we explored these using 0.5–4 M LiCl and KCl electrolytes with holo-human serum transferrin (hSTf) protein as the model protein in both low (±50 mV) and high (±400 mV) electric field regimes. Unlike in KCl, where events were purely electrophoretic, the transport in LiCl transitioned from electrophoretic to electroosmotic with decreasing salt concentration while intermediate concentrations ( i.e. , 2 M and 2.5 M) were influenced by diffusion. Segregating diffusion-limited capture rate ( R diff ) into electrophoretic ( R diff,EP ) and electroosmotic ( R diff,EO ) components provided an approach to calculate the zeta-potential of hSTf ( ζ hSTf ) with the aid of C R and zeta potential of the nanopore surface ( ζ pore ) with ( ζ pore – ζ hSTf ) governing the transport mechanism. Scrutinization of the conventional excluded volume model revealed its shortcomings in capturing surface contributions and a new model was then developed to fit the translocation characteristics of proteins. 
    more » « less
  7. null (Ed.)