For evaluating the climatic and landscape controls on long‐term baseflow, baseflow index (BFI, defined as the ratio of baseflow to streamflow) and baseflow coefficient (BFC, defined as the ratio of baseflow to precipitation) are formulated as functions of climate aridity index, storage capacity index (defined as the ratio of average soil water storage capacity to precipitation), and a shape parameter for the spatial variability of storage capacity. The derivation is based on the two‐stage partitioning framework and a cumulative distribution function for storage capacity. Storage capacity has a larger impact on BFI than on BFC. When storage capacity index is smaller than 1, BFI is less sensitive to storage capacity index in arid regions compared to that in humid regions; whereas, when storage capacity index is larger than 1, BFI is less sensitive to storage capacity index in humid regions. The impact of storage capacity index on BFC is only significant in humid regions. The shape parameter plays an important role on fast flow generation at the first‐stage partitioning in humid regions and baseflow generation at the second‐stage partitioning in arid regions. The derived formulae were applied to more than 400 catchments where storage capacity index was found to follow a logarithmic function with climate aridity index. The role of climate forcings at finer timescales on baseflow were quantified, indicating that seasonality in climate forcings has a significant control especially on BFI.
more » « less- Award ID(s):
- 1804770
- NSF-PAR ID:
- 10446514
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Water Resources Research
- Volume:
- 57
- Issue:
- 6
- ISSN:
- 0043-1397
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)Documenting how ground- and surface water systems respond to climate change is crucial to understanding water resources, particularly in the U.S. Great Lakes region, where drastic temperature and precipitation changes are observed. This study presents baseflow and baseflow index (BFI) trend analyses for 10 undisturbed watersheds in Michigan using (1) multi-objective optimization (MOO) and (2) modified Mann–Kendall (MK) tests corrected for short-term autocorrelation (STA). Results indicate a variability in mean baseflow (0.09–8.70 m3/s) and BFI (67.9–89.7%) that complicates regional-scale extrapolations of groundwater recharge. Long-term (>60 years) MK trend tests indicate a significant control of total precipitation (P) and snow- to rainfall transitions on baseflow and BFI. In the Lower Peninsula Rifle River watershed, increasing P and a transition from snow- to rainfall has increased baseflow at a lower rate than streamflow; an overall pattern that may contribute to documented flood frequency increases. In the Upper Peninsula Ford River watershed, decreasing P and a transition from rain- to snowfall had no significant effects on baseflow and BFI. Our results highlight the value of an objectively constrained BFI parameter for shorter-term (<50 years) hydrologic trend analysis because of a lower STA susceptibility.more » « less
-
Abstract A three‐stage precipitation partitioning framework is proposed to study the climate controls on mean annual groundwater evapotranspiration (GWET) for 33 gauged watersheds in west‐central Florida. Daily GWET, total evapotranspiration (ET), groundwater recharge, base flow, and total runoff are simulated by the Integrated Hydrologic Model, which dynamically couples a surface water model (HSPF) and a groundwater flow model (MODFLOW). The roles of GWET on long‐term water balance are quantified by four ratios. The ratios of GWET to total available water, watershed wetting, ET, and recharge decrease exponentially with watershed aridity index (WAI), which is defined as the ratio of potential evapotranspiration to total available water. In the one‐stage precipitation partitioning framework, the contribution of GWET to the ratio between total ET and available water for ET (i.e., the
y ‐axis of Budyko curve) decreases with WAI. In the two‐stage precipitation partitioning framework, the contribution of GWET to the ratio between total ET and watershed wetting (i.e., Horton index) decreases with WAI. The changes in GWET caused by intra‐monthly (IM) climate variability are the highest among the temporal scales of climate variability investigated to understand controls on GWET. The inter‐annual, intra‐annual, and IM climate variabilities lead to increase of GWET; but the sub‐daily climate variability results in decrease of GWET. For the third stage of partitioning, given the same ratio of potential GWET to available water for GWET, higher percentage of forest and wetland and lower percentage of impervious land contribute to higher ratio of GWET to available water for GWET. -
Anthropogenic climate change is expected to increase the aridity of many regions of the world. Surface water ecosystems are particularly vulnerable to changes in the water-cycle and may suffer adverse impacts in affected regions. To enhance our understanding of how freshwater communities will respond to predicted shifts in water-cycle dynamics, we employed a space for time approach along a natural precipitation gradient on the Texas Coastal Prairie. In the spring of 2017, we conducted surveys of 10 USGS-gauged, wadeable streams spanning a semi-arid to sub-humid rainfall gradient; we measured nutrients, water chemistry, habitat characteristics, benthic macroinvertebrates, and fish communities. Fish diversity correlated positively with precipitation and was negatively correlated with conductivity. Macroinvertebrate diversity peaked within the middle of the gradient. Semi-arid fish and invertebrate communities were dominated by euryhaline and live-bearing taxa. Sub-humid communities contained environmentally sensitive trichopterans and ephemeropterans as well as a variety of predatory fish which may impose top-down controls on primary consumers. These results warn that aridification coincides with the loss of competitive and environmentally sensitive taxa which could yield less desirable community states.more » « less
-
Abstract Precipitation is the primary driver of hydrological models, and its spatial and temporal variability have a great impact on water partitioning. However, in data‐sparse regions, uncertainty in precipitation estimates is high and the sensitivity of water partitioning to this uncertainty is unknown. This is a particular challenge in drylands (semi‐arid and arid regions) where the water balance is highly sensitive to rainfall, yet there is commonly a lack of in situ rain gauge data. To understand the impact of precipitation uncertainty on the water balance in drylands, here we have performed simulations with a process‐based hydrological model developed to characterize the water balance in arid and semi‐arid regions (DRYP: DRYland water Partitioning model). We performed a series of numerical analyses in the Upper Ewaso Ng'iro basin, Kenya driven by three gridded precipitation datasets with different spatio‐temporal resolutions (IMERG, MSWEP, and ERA5), evaluating simulations against streamflow observations and remotely sensed data products of soil moisture, actual evapotranspiration, and total water storage. We found that despite the great differences in the spatial distribution of rainfall across a climatic gradient within the basin, DRYP shows good performance for representing streamflow (KGE >0.6), soil moisture, actual evapotranspiration, and total water storage (
r >0.5). However, the choice of precipitation datasets greatly influences surface (infiltration, runoff, and transmission losses) and subsurface fluxes (groundwater recharge and discharge) across different climatic zones of the Ewaso Ng'iro basin. Within humid areas, evapotranspiration does not show sensitivity to the choice of precipitation dataset, however, in dry lowland areas it becomes more sensitive to precipitation rates as water‐limited conditions develop. The analysis shows that the highest rates of precipitation produce high rates of diffuse recharge in Ewaso uplands and also propagate into runoff, transmission losses and, ultimately focused recharge, with the latter acting as the main mechanism of groundwater recharge in low dry areas. The results from this modelling exercise suggest that care must be taken in selecting forcing precipitation data to drive hydrological modelling efforts, especially in basins that span a climatic gradient. These results also suggest that more effort is required to reduce uncertainty between different precipitation datasets, which will in turn result in more consistent quantification of the water balance. -
Abstract The available water for evaporation within a catchment is spatially variable. However, how the spatial variability of available water affects mean annual evaporation is not fully understood. For a specific catchment, a suitable distribution function defined for non‐negative random variables can be determined through statistical methods to represent the spatial variability of the available water when the point‐scale data are available. This article proposes that the distribution function representing the spatial variability of available water for evaporation determines the functional form of Budyko equation based on the one‐stage precipitation partitioning concept. Specifically, the available water for evaporation following a single‐parameter distribution function leads to a deterministic Budyko equation; whereas a two‐parameter distribution function of available water for evaporation leads to a single‐parameter Budyko equation. We identified the property of distribution function for symmetric Budyko equation, which suggests that precipitation partitioning and energy partitioning in the hydrological cycle follow the same functional form with respect to aridity index and humidity index, respectively. The lower bound of Budyko curve is explained as a result of probable distributions of available water for evaporation due to catchment co‐evolution.