skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Microbial Models for Simulating Soil Carbon Dynamics: A Review
Key Points More than 70 microbial models have recently been developed to simulate soil carbon dynamics Diversity in model structures and parameters indicates uncertainty in translating current knowledge of microbial processes into models Data‐driven model development and parameterization are highly recommended to improve the prediction of microbial models  more » « less
Award ID(s):
2242034 1655499
PAR ID:
10446663
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Geophysical Research: Biogeosciences
Volume:
128
Issue:
8
ISSN:
2169-8953
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Litter decomposition determines soil organic matter (SOM) formation and plant‐available nutrient cycles. Therefore, accurate model representation of litter decomposition is critical to improving soil carbon (C) projections of bioenergy feedstocks. Soil C models that simulate microbial physiology (i.e., microbial models) are new to bioenergy agriculture, and their parameterization is often based on small datasets or manual calibration to reach benchmarks. Here, we reparameterized litter decomposition in a microbial soil C model (CORPSE ‐ Carbon, Organisms, Rhizosphere, and Protection in the Soil Environment) using the continental‐scale Long‐term Inter‐site Decomposition Experiment Team (LIDET) dataset which documents decomposition across a range of litter qualities over a decade. We conducted a simplified Monte Carlo simulation that constrained parameter values to reduce computational costs. The LIDET‐derived parameters improved modeled C and nitrogen (N) remaining, decomposition rates, and litter mean residence times as compared to Baseline parameters. We applied the LIDET litter decomposition parameters to a microbial bioenergy model (Fixation and Uptake of Nitrogen – Bioenergy Carbon, Rhizosphere, Organisms, and Protection) to examine soil C estimates generated by Baseline and LIDET parameters. LIDET parameters increased estimated soil C in bioenergy feedstocks, with even greater increases under elevated plant inputs (i.e., by increasing residue, N fertilization). This was due to the integrated effects of plant litter quantity, quality, and agricultural practices (tillage, fertilization). Collectively, we developed a simple framework for using large‐scale datasets to inform the parameterization of microbial models that impacts projections of soil C for bioenergy feedstocks. 
    more » « less
  2. Abstract Understanding factors influencing carbon effluxes from soils to the atmosphere is important in a world experiencing climatic change. Two important uncertainties related to soil organic carbon (SOC) stock responses to a changing climate are (a) whether soil microbial communities acclimate or adapt to changes in soil temperature and (b) how to represent this process in SOC models. To further explore these issues, we included thermal adaptation of enzyme‐mediated processes in a mechanistic SOC model (ReSOM) using the macromolecular rate theory. Thermal adaptation is defined here to encompass all potential responses of soil microbes and microbial communities following a change in temperature. To assess the effects of thermal adaptation of enzyme‐mediated processes on simulated SOC losses, ReSOM was applied to data collected from a 13‐year soil warming experiment. Results show that a model omitting thermal adaptation of enzyme‐mediated processes substantially overestimates observed CO2effluxes during the initial years of soil warming. The bias against observed CO2effluxes was lower for models including thermal adaptation of enzyme‐mediated processes. In addition, for a simulated linear 3°C soil warming over 100 years, models including thermal adaptation of enzyme‐mediated processes simulated SOC losses of a factor of three smaller than models omitting this process. As thermal adaptation of microbial community characteristics is generally not included in models simulating feedback between the soil, biosphere and atmosphere, we encourage future studies to assess the potential impact that microbial adaptation has on soil carbon – climate feedback representations in models. 
    more » « less
  3. Abstract Nutrient limitation is widespread in terrestrial ecosystems. Accordingly, representations of nitrogen (N) limitation in land models typically dampen rates of terrestrial carbon (C) accrual, compared with C‐only simulations. These previous findings, however, rely on soil biogeochemical models that implicitly represent microbial activity and physiology. Here we present results from a biogeochemical model testbed that allows us to investigate how an explicit versus implicit representation of soil microbial activity, as represented in the MIcrobial‐MIneral Carbon Stabilization (MIMICS) and Carnegie‐Ames‐Stanford Approach (CASA) soil biogeochemical models, respectively, influence plant productivity, and terrestrial C and N fluxes at initialization and over the historical period. When forced with common boundary conditions, larger soil C pools simulated by the MIMICS model reflect longer inferred soil organic matter (SOM) turnover times than those simulated by CASA. At steady state, terrestrial ecosystems experience greater N limitation when using the MIMICS‐CN model, which also increases the inferred SOM turnover time. Over the historical period, however, warming‐induced acceleration of SOM decomposition over high latitude ecosystems increases rates of N mineralization in MIMICS‐CN. This reduces N limitation and results in faster rates of vegetation C accrual. Moreover, as SOM stoichiometry is an emergent property of MIMICS‐CN, we highlight opportunities to deepen understanding of sources of persistent SOM and explore its potential sensitivity to environmental change. Our findings underscore the need to improve understanding and representation of plant and microbial resource allocation and competition in land models that represent coupled biogeochemical cycles under global change scenarios. 
    more » « less
  4. ABSTRACT Litter decomposition is an important ecosystem process and global carbon flux that has been shown to be controlled by climate, litter quality, and microbial communities. Process‐based ecosystem models are used to predict responses of litter decomposition to climate change. While these models represent climate and litter quality effects on litter decomposition, they have yet to integrate empirical microbial community data into their parameterizations for predicting litter decomposition. To fill this gap, our research used a comprehensive leaf litterbag decomposition experiment at 10 temperate forest U.S. National Ecological Observatory Network (NEON) sites to calibrate (7 sites) and validate (3 sites) the MIcrobial‐MIneral Carbon Stabilization (MIMICS) model. MIMICS was calibrated to empirical decomposition rates and to their empirical drivers, including the microbial community (represented as the copiotroph‐to‐oligotroph ratio). We calibrate to empirical drivers, rather than solely rates or pool sizes, to improve the underlying drivers of modeled leaf litter decomposition. We then validated the calibrated model and evaluated the effects of calibration under climate change using the SSP 3–7.0 climate change scenario. We find that incorporating empirical drivers of litter decomposition provides similar, and sometimes better (in terms of goodness‐of‐fit metrics), predictions of leaf litter decomposition but with different underlying ecological dynamics. For some sites, calibration also increased climate change‐induced leaf litter mass loss by up to 5%, with implications for carbon cycle‐climate feedbacks. Our work also provides an example for integrating data on the relative abundance of bacterial functional groups into an ecosystem model using a novel calibration method to bridge empiricism and process‐based modeling, answering a call for the use of empirical microbial community data in process‐based ecosystem models. We highlight that incorporating mechanistic information into models, as done in this study, is important for improving confidence in model projections of ecological processes like litter decomposition under climate change. 
    more » « less
  5. Abstract Incorporating microbial processes into soil biogeochemical models has received growing interest. However, determining the parameters that govern microbially driven biogeochemical processes typically requires case‐specific model calibration in various soil and ecosystem types. Here each case refers to an independent and individual experimental unit subjected to repeated measurements. Using the Microbial‐ENzyme Decomposition model, this study aimed to test whether a common set of microbially‐relevant parameters (i.e., generalized parameters) could be obtained across multiple cases based on a two‐year incubation experiment in which soil samples of four distinct soil series (i.e., Coland, Kesswick, Westmoreland, and Etowah) collected from forest and grassland were subjected to cellulose or no cellulose amendment. Results showed that a common set of parameters controlling microbial growth and maintenance as well as extracellular enzyme production and turnover could be generalized at the soil series level but not land cover type. This indicates that microbial model developments need to prioritize soil series type over plant functional types when implemented across various sites. This study also suggests that, in addition to heterotrophic respiration and microbial biomass data, extracellular enzyme data sets are needed to achieve reliable microbial‐relevant parameters for large‐scale soil model projections. 
    more » « less