Abstract Invasive forest insects can induce tree mortality in two ways: (a) by directly harming trees; or (b) by influencing forest owners to pre‐emptively harvest threatened trees. This study investigates forest owners’ intentions to harvest trees threatened by invasive insects.Our first objective is to identify and characterize agent functional types (AFTs) of family forest owners in the northeastern United States using a set of contingent behaviour questions contained in a mail survey. We establish AFTs as a form of dimension reduction, effectively casting landowners into a typology in which each type (AFT) has distinct probabilities of tree harvesting in response to forest insects. Our analysis identifies three functional types of landowners: ‘Cutters’ (46% of respondents; high intent to harvest trees impacted by invasive forest insects), ‘Responsive Cutters’ (42% of respondents; intent sensitive to insect impact severity), and ‘Non‐cutters’ (12% of respondents; low intent to cut).Our second objective is to model AFT membership to predict the distribution of AFTs across the landscape. Predictors are chosen from a set of survey, geographic and demographic features. Our best AFT‐prediction model has three predictor variables: parcel size (hectares of forest), geographical region, and town‐level forested fraction. Application of the model provides a high‐resolution probability distribution of AFTs across the landscape.By coupling human and insect behaviour, our results allow for holistic assessments of how invasive forest insects disturb forests, inclusive of the management response to these pests. A freePlain Language Summarycan be found within the Supporting Information of this article. 
                        more » 
                        « less   
                    
                            
                            Defoliated trees die below a critical threshold of stored carbon
                        
                    
    
            Abstract Carbon starvation posits that defoliation‐ and drought‐induced mortality results from drawing down stored non‐structural carbohydrates (NSCs), but evidence is mixed, and few studies evaluate mortality directly. We tested the relationships among defoliation severity, NSC drawdown and tree mortality by measuring NSCs in mature oak trees defoliated by an invasive insect,Lymantria dispar, across a natural gradient of defoliation severity.We collected stem and root samples from mature oaks (Quercus rubraandQ.alba) in interior forests (n = 34) and forest edges (n = 47) in central Massachusetts, USA. Total NSC (TNC; sugar + starch) stores were analysed with respect to tree size, species and defoliation severity, which ranged between 5% and 100%.TNC stores declined significantly with increasingly severe defoliation. Forest edge trees had higher TNC stores that were less sensitive to defoliation than interior forest trees, although this may be a result of differing defoliation history. Furthermore, we observed a mortality threshold of 1.5% dry weight TNC.Our study draws a direct link between insect defoliation and TNC reserves and defines a TNC threshold below which mortality is highly likely. These findings advance understanding and improve model parametrization of tree response to insect outbreaks, an increasing threat with globalization and climate change. A freePlain Language Summarycan be found within the Supporting Information of this article. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1832210
- PAR ID:
- 10446823
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Functional Ecology
- Volume:
- 35
- Issue:
- 10
- ISSN:
- 0269-8463
- Page Range / eLocation ID:
- p. 2156-2167
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Climate change is stressing many forests around the globe, yet some tree species may be able to persist through acclimation and adaptation to new environmental conditions. The ability of a tree to acclimate during its lifetime through changes in physiology and functional traits, defined here as its acclimation potential, is not well known.We investigated the acclimation potential of trembling aspenPopulus tremuloidesand ponderosa pinePinus ponderosatrees by examining within‐species variation in drought response functional traits across both space and time, and how trait variation influences drought‐induced tree mortality. We measured xylem tension, morphological traits and physiological traits on mature trees in southwestern Colorado, USA across a climate gradient that spanned the distribution limits of each species and 3 years with large differences in climate.Trembling aspen functional traits showed high within‐species variation, and osmotic adjustment and carbon isotope discrimination were key determinants for increased drought tolerance in dry sites and in dry years. However, trembling aspen trees at low elevation were pushed past their drought tolerance limit during the severe 2018 drought year, as elevated mortality occurred. Higher specific leaf area during drought was correlated with higher percentages of canopy dieback the following year. Ponderosa pine functional traits showed less within‐species variation, though osmotic adjustment was also a key mechanism for increased drought tolerance. Remarkably, almost all traits varied more year‐to‐year than across elevation in both species.Our results shed light on the scope and limits of intraspecific trait variation for mediating drought responses in key southwestern US tree species and will help improve our ability to model and predict forest responses to climate change. Read the freePlain Language Summaryfor this article on the Journal blog.more » « less
- 
            Atkins, Jeff (Ed.)Abstract Understanding connections between ecosystem nitrogen (N) cycling and invasive insect defoliation could facilitate the prediction of disturbance impacts across a range of spatial scales. In this study we investigated relationships between ecosystem N cycling and tree defoliation during a recent 2015–18 irruption of invasive gypsy moth caterpillars (Lymantria dispar), which can cause tree stress and sometimes mortality following multiple years of defoliation. Nitrogen is a critical nutrient that limits the growth of caterpillars and plants in temperate forests. In this study, we assessed the associations among N concentrations, soil solution N availability and defoliation intensity by L. dispar at the scale of individual trees and forest plots. We measured leaf and soil N concentrations and soil solution inorganic N availability among individual red oak trees (Quercus rubra) in Amherst, MA and across a network of forest plots in Central Massachusetts. We combined these field data with estimated defoliation severity derived from Landsat imagery to assess relationships between plot-scale defoliation and ecosystem N cycling. We found that trees in soil with lower N concentrations experienced more herbivory than trees in soil with higher N concentrations. Additionally, forest plots with lower N soil were correlated with more severe L. dispar defoliation, which matched the tree-level relationship. The amount of inorganic N in soil solution was strongly positively correlated with defoliation intensity and the number of sequential years of defoliation. These results suggested that higher ecosystem N pools might promote the resistance of oak trees to L. dispar defoliation and that defoliation severity across multiple years is associated with a linear increase in soil solution inorganic N.more » « less
- 
            Abstract Ectomycorrhizal (EM) effects on forest ecosystem carbon (C) and nitrogen (N) cycling are highly variable, which may be due to underappreciated functional differences among EM‐associating trees. We hypothesise that differences in functional traits among EM tree genera will correspond to differences in soil organic matter (SOM) dynamics.We explored how differences among three genera of angiosperm EM trees (Quercus,Carya, andTilia) in functional traits associated with leaf litter quality, resource use and allocation patterns, and microbiome assembly related to overall soil biogeochemical properties.We found consistent differences among EM tree genera in functional traits.Quercustrees had lower litter quality, lower δ13C in SOM, higher δ15N in leaf tissues, greater oxidative extracellular enzyme activities, and higher EM fungal diversity thanTiliatrees, whileCaryatrees were often intermediary. These functional traits corresponded to overall SOM‐C and N dynamics and soil fungal and bacterial community composition.Our findings suggest that trait variation among EM‐associating tree species should be an important consideration in assessing plant–soil relationships such that EM trees cannot be categorised as a unified functional guild. Read the freePlain Language Summaryfor this article on the Journal blog.more » « less
- 
            Summary Shifts in the age or turnover time of non‐structural carbohydrates (NSC) may underlie changes in tree growth under long‐term increases in drought stress associated with climate change. But NSC responses to drought are challenging to quantify, due in part to large NSC stores in trees and subsequently long response times of NSC to climate variation.We measured NSC age (Δ14C) along with a suite of ecophysiological metrics inPinus edulistrees experiencing either extreme short‐term drought (−90% ambient precipitation plot, 2020–2021) or a decade of severe drought (−45% plot, 2010–2021). We tested the hypothesis that carbon starvation – consumption exceeding synthesis and storage – increases the age of sapwood NSC.One year of extreme drought had no impact on NSC pool size or age, despite significant reductions in predawn water potential, photosynthetic rates/capacity, and twig and needle growth. By contrast, long‐term drought halved the age of the sapwood NSC pool, coupled with reductions in sapwood starch concentrations (−75%), basal area increment (−39%), and bole respiration rates (−28%).Our results suggest carbon starvation takes time, as tree carbon reserves appear resilient to extreme disturbance in the short term. However, after a decade of drought, trees apparently consumed old stored NSC to support metabolism.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
