Abstract The transporter systems of Oliver and Ventura and the localities of Chermak are classes of algebraic structures that model the ‐local structures of finite groups. Other than the transporter categories and localities of finite groups, important examples include centric, quasicentric, and subcentric linking systems for saturated fusion systems. These examples are, however, not defined in general on the full collection of subgroups of the Sylow group. We study here punctured groups , a short name for transporter systems or localities on the collection of nonidentity subgroups of a finite ‐group. As an application of the existence of a punctured group, we show that the subgroup homology decomposition on the centric collection is sharp for the fusion system. We also prove a Signalizer Functor Theorem for punctured groups and use it to show that the smallest Benson–Solomon exotic fusion system at the prime 2 has a punctured group, while the others do not. As for exotic fusion systems at odd primes , we survey several classes and find that in almost all cases, either the subcentric linking system is a punctured group for the system, or the system has no punctured group because the normalizer of some subgroup of order is exotic. Finally, we classify punctured groups restricting to the centric linking system for certain fusion systems on extraspecial ‐groups of order .
more »
« less
Weights in a Benson-Solomon block
Abstract To each pair consisting of a saturated fusion system over a p -group together with a compatible family of Külshammer-Puig cohomology classes, one can count weights in a hypothetical block algebra arising from these data. When the pair arises from a genuine block of a finite group algebra in characteristic p , the number of conjugacy classes of weights is supposed to be the number of simple modules in the block. We show that there is unique such pair associated with each Benson-Solomon exotic fusion system, and that the number of weights in a hypothetical Benson-Solomon block is $12$ , independently of the field of definition. This is carried out in part by listing explicitly up to conjugacy all centric radical subgroups and their outer automorphism groups in these systems.
more »
« less
- Award ID(s):
- 1902152
- PAR ID:
- 10447177
- Date Published:
- Journal Name:
- Forum of Mathematics, Sigma
- Volume:
- 11
- ISSN:
- 2050-5094
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We show that if a finitely generated group $$G$$ has a nonelementary WPD action on a hyperbolic metric space $$X$$ , then the number of $$G$$ -conjugacy classes of $$X$$ -loxodromic elements of $$G$$ coming from a ball of radius $$R$$ in the Cayley graph of $$G$$ grows exponentially in $$R$$ . As an application we prove that for $$N\geq 3$$ the number of distinct $$\text{Out}(F_{N})$$ -conjugacy classes of fully irreducible elements $$\unicode[STIX]{x1D719}$$ from an $$R$$ -ball in the Cayley graph of $$\text{Out}(F_{N})$$ with $$\log \unicode[STIX]{x1D706}(\unicode[STIX]{x1D719})$$ of the order of $$R$$ grows exponentially in $$R$$ .more » « less
-
Abstract In this paper, we establish a precise connection between higher rho invariants and delocalized eta invariants. Given an element in a discrete group, if its conjugacy class has polynomial growth, then there is a natural trace map on the $$K_0$$-group of its group $$C^\ast$$-algebra. For each such trace map, we construct a determinant map on secondary higher invariants. We show that, under the evaluation of this determinant map, the image of a higher rho invariant is precisely the corresponding delocalized eta invariant of Lott. As a consequence, we show that if the Baum–Connes conjecture holds for a group, then Lott’s delocalized eta invariants take values in algebraic numbers. We also generalize Lott’s delocalized eta invariant to the case where the corresponding conjugacy class does not have polynomial growth, provided that the strong Novikov conjecture holds for the group.more » « less
-
Inspired by results of Eskin and Mirzakhani (J Mod Dyn 5(1):71–105, 2011) counting closed geodesics of length at most L in the moduli space of a fixed closed surface, we consider a similar question in the Out(Fr) setting. The Eskin-Mirzakhani result can be equivalently stated in terms of counting the number of conjugacy classes (within the mapping class group) of pseudo-Anosovs whose dilatations have natural logarithm at most L. Let N(L) denote the number of Out(Fr)-conjugacy classes of fully irreducibles satisfying that the natural logarithm of their dilatation is at most L. We prove for r>2 that as L goes to infinity, the number N(L) has double exponential (in L) lower and upper bounds. These bounds reveal behavior not present in the surface setting or in classical hyperbolic dynamical systems.more » « less
An official website of the United States government

