skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A discontinuous Galerkin method for sequences of earthquakes and aseismic slip on multiple faults using unstructured curvilinear grids
SUMMARY Physics-based simulations provide a path to overcome the lack of observational data hampering a holistic understanding of earthquake faulting and crustal deformation across the vastly varying space–time scales governing the seismic cycle. However, simulations of sequences of earthquakes and aseismic slip (SEAS) including the complex geometries and heterogeneities of the subsurface are challenging. We present a symmetric interior penalty discontinuous Galerkin (SIPG) method to perform SEAS simulations accounting for the aforementioned challenges. Due to the discontinuous nature of the approximation, the spatial discretization natively provides a means to impose boundary and interface conditions. The method accommodates 2-D and 3-D domains, is of arbitrary order, handles subelement variations in material properties and supports isoparametric elements, that is, high-order representations of the exterior boundaries, interior material interfaces and embedded faults. We provide an open-source reference implementation, Tandem, that utilizes highly efficient kernels for evaluating the SIPG linear and bilinear forms, is inherently parallel and well suited to perform high-resolution simulations on large-scale distributed memory architectures. Additional flexibility and efficiency is provided by optionally defining the displacement evaluation via a discrete Green’s function approach, exploiting advantages of both the boundary integral and volumetric methods. The optional discrete Green’s functions are evaluated once in a pre-computation stage using algorithmically optimal and scalable sparse parallel solvers and pre-conditioners. We illustrate the characteristics of the SIPG formulation via an extensive suite of verification problems (analytic, manufactured and code comparison) for elastostatic and quasi-dynamic problems. Our verification suite demonstrates that high-order convergence of the discrete solution can be achieved in space and time and highlights the benefits of using a high-order representation of the displacement, material properties and geometries. We apply Tandem to realistic demonstration models consisting of a 2-D SEAS multifault scenario on a shallowly dipping normal fault with four curved splay faults, and a 3-D intersecting multifault scenario of elastostatic instantaneous displacement of the 2019 Ridgecrest, CA, earthquake sequence. We exploit the curvilinear geometry representation in both application examples and elucidate the importance of accurate stress (or displacement gradient) representation on-fault. This study entails several methodological novelties. We derive a sharp bound on the smallest value of the SIPG penalty ensuring stability for isotropic, elastic materials; define a new flux to incorporate embedded faults in a standard SIPG scheme; employ a hybrid multilevel pre-conditioner for the discrete elasticity problem; and demonstrate that curvilinear elements are specifically beneficial for volumetric SEAS simulations. We show that our method can be applied for solving interesting geophysical problems using massively parallel computing. Finally, this is the first time a discontinuous Galerkin method is published for the numerical simulations of SEAS, opening new avenues to pursue extreme scale 3-D SEAS simulations in the future.  more » « less
Award ID(s):
2121666 2121568 2225216
PAR ID:
10447649
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Geophysical Journal International
Volume:
233
Issue:
1
ISSN:
0956-540X
Page Range / eLocation ID:
586 to 626
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT Numerical models of rupture dynamics provide great insights into the physics of fault failure. However, resolving stress interactions among multiple faults remains challenging numerically. Here, we derive the elastostatic Green’s functions for stress and displacement caused by arbitrary slip distributions along multiple parallel faults. The equations are derived in the Fourier domain, providing an efficient means to calculate stress interactions with the fast Fourier transform. We demonstrate the relevance of the method for a wide range of applications, by simulating the rupture dynamics of single and multiple parallel faults controlled by a rate- and state-dependent frictional contact, using the spectral boundary integral method and the radiation-damping approximation. Within the antiplane strain approximation, we show seismic cycle simulations with a power-law distribution of rupture sizes and, in a different parameter regime, sequences of seismogenic slow-slip events. Using the in-plane strain approximation, we simulate the rupture dynamics of a restraining stepover. Finally, we describe cycles of large earthquakes along several parallel strike-slip faults in three dimensions. The approach is useful to explore the dynamics of interacting or isolated faults with many degrees of freedom. 
    more » « less
  2. Abstract An interior penalty discontinuous Galerkin method is devised to approximate minimizers of a linear folding model by discontinuous isoparametric finite element functions that account for an approximation of a folding arc. The numerical analysis of the discrete model includes an a priori error estimate in case of an accurate representation of the folding curve by the isoparametric mesh. Additional estimates show that geometric consistency errors may be controlled separately if the folding arc is approximated by piecewise polynomial curves. Various numerical experiments are carried out to validate the a priori error estimate for the folding model. 
    more » « less
  3. An H(div)-conforming finite element method for the Biot’s consolidation mo- del is developed, with displacements and fluid velocity approximated by elements from BDM_k space. The use of H(div)-conforming elements for flow variables ensures the local mass conservation. In the H(div)-conforming approximation of displacement, the tan- gential components are discretised in the interior penalty discontinuous Galerkin frame- work,and the normal components across the element interfaces are continuous. Having introduced a spatial discretisation, we develop a semi-discrete scheme and a fully dis- crete scheme,prove their unique solvability and establish optimal error estimates for each variable. 
    more » « less
  4. The analyses of interior penalty discontinuous Galerkin methods of any order k for solving elliptic and parabolic problems with Dirac line sources are presented. For the steady state case, we prove convergence of the method by deriving a priori error estimates in the L 2 norm and in weighted energy norms. In addition, we prove almost optimal local error estimates in the energy norm for any approximation order. Further, almost optimal local error estimates in the L 2 norm are obtained for the case of piecewise linear approximations whereas suboptimal error bounds in the L 2 norm are shown for any polynomial degree. For the time-dependent case, convergence of semi-discrete and of backward Euler fully discrete scheme is established by proving error estimates in L 2 in time and in space. Numerical results for the elliptic problem are added to support the theoretical results. 
    more » « less
  5. This article analyzes the effect of the penalty parameter used in  symmetric dual-wind discontinuous Galerkin (DWDG) methods for approximating second order elliptic partial differential equations (PDE).  DWDG methods follow from the DG differential calculus framework that defines discrete differential operators used to replace the continuous differential operators when discretizing a PDE. We establish the convergence of the DWDG approximation to a continuous Galerkin approximation as the penalty parameter tends towards infinity. We also test the influence of the regularity of the solution for elliptic second-order PDEs with regards to the relationship between the penalty parameter and the error for the DWDG approximation. Numerical experiments are provided to validate the theoretical results and to investigate the relationship between the penalty parameter and the L^2-error.For more information see https://ejde.math.txstate.edu/conf-proc/26/l1/abstr.html 
    more » « less