Title: Maintaining the Union of Unit Discs under Insertions with Near-Optimal Overhead
We present efficient dynamic data structures for maintaining the union of unit discs and the lower envelope of pseudo-lines in the plane. More precisely, we present three main results in this paper: (i) We present a linear-size data structure to maintain the union of a set of unit discs under insertions. It can insert a disc and update the union in O (( k +1)log 2 n ) time, where n is the current number of unit discs and k is the combinatorial complexity of the structural change in the union due to the insertion of the new disc. It can also compute, within the same time bound, the area of the union after the insertion of each disc. (ii) We propose a linear-size data structure for maintaining the lower envelope of a set of x -monotone pseudo-lines. It can handle insertion/deletion of a pseudo-line in O (log 2 n ) time; for a query point x 0 ∈ ℝ, it can report, in O (log n ) time, the point on the lower envelope with x -coordinate x 0 ; and for a query point q ∈ ℝ 2 , it can return all k pseudo-lines lying below q in time O (log n + k log 2 n ). (iii) We present a linear-size data structure for storing a set of circular arcs of unit radius (not necessarily on the boundary of the union of the corresponding discs), so that for a query unit disc D , all input arcs intersecting D can be reported in O ( n 1/2+ɛ + k ) time, where k is the output size and ɛ > 0 is an arbitrarily small constant. A unit-circle arc can be inserted or deleted in O (log 2 n ) time. more »« less
Agarwal, Pankaj K; Ezra, Esther
(, Schloss Dagstuhl – Leibniz-Zentrum für Informatik)
Chambers, Erin W; Gudmundsson, Joachim
(Ed.)
Let ℬ be a set of n unit balls in ℝ³. We present a linear-size data structure for storing ℬ that can determine in O^*(n^{1/2}) time whether a query line intersects any ball of ℬ and report all k such balls in additional O(k) time. The data structure can be constructed in O(n log n) time. (The O^*(⋅) notation hides subpolynomial factors, e.g., of the form O(n^ε), for arbitrarily small ε > 0, and their coefficients which depend on ε.) We also consider the dual problem: Let ℒ be a set of n lines in ℝ³. We preprocess ℒ, in O^*(n²) time, into a data structure of size O^*(n²) that can determine in O^*(1) time whether a query unit ball intersects any line of ℒ, or report all k such lines in additional O(k) time.
Wang, Haitao
(, Journal of computational geometry)
Given a set $$P$$ of $$n$$ points in the plane, we consider the problem of computing the number of points of $$P$$ in a query unit disk (i.e., all query disks have the same radius). We show that the main techniques for simplex range searching in the plane can be adapted to this problem. For example, by adapting Matoušek's results, we can build a data structure of $O(n)$ space in $$O(n^{1+\delta})$$ time (for any $$\delta>0$$) so that each query can be answered in $$O(\sqrt{n})$$ time; alternatively, we can build a data structure of $$O(n^2/\log^2 n)$$ space with $$O(n^{1+\delta})$$ preprocessing time (for any $$\delta>0$$) and $$O(\log n)$$ query time. Our techniques lead to improvements for several other classical problems in computational geometry. 1. Given a set of $$n$$ unit disks and a set of $$n$$ points in the plane, the batched unit-disk range counting problem is to compute for each disk the number of points in it. Previous work [Katz and Sharir, 1997] solved the problem in $$O(n^{4/3}\log n)$$ time. We give a new algorithm of $$O(n^{4/3})$$ time, which is optimal as it matches an $$\Omega(n^{4/3})$$-time lower bound. For small $$\chi$$, where $$\chi$$ is the number of pairs of unit disks that intersect, we further improve the algorithm to $$O(n^{2/3}\chi^{1/3}+n^{1+\delta})$$ time, for any $$\delta>0$$. 2. The above result immediately leads to an $$O(n^{4/3})$$ time optimal algorithm for counting the intersecting pairs of circles for a set of $$n$$ unit circles in the plane. The previous best algorithms solve the problem in $$O(n^{4/3}\log n)$$ deterministic time [Katz and Sharir, 1997] or in $$O(n^{4/3}\log^{2/3} n)$$ expected time by a randomized algorithm [Agarwal, Pellegrini, and Sharir, 1993]. 3. Given a set $$P$$ of $$n$$ points in the plane and an integer $$k$$, the distance selection problem is to find the $$k$$-th smallest distance among all pairwise distances of $$P$$. The problem can be solved in $$O(n^{4/3}\log^2 n)$$ deterministic time [Katz and Sharir, 1997] or in $$O(n\log n+n^{2/3}k^{1/3}\log^{5/3}n)$$ expected time by a randomized algorithm [Chan, 2001]. Our new randomized algorithm runs in $$O(n\log n +n^{2/3}k^{1/3}\log n)$$ expected time. 4. Given a set $$P$$ of $$n$$ points in the plane, the discrete $$2$$-center problem is to compute two smallest congruent disks whose centers are in $$P$$ and whose union covers $$P$$. An $$O(n^{4/3}\log^5 n)$$-time algorithm was known [Agarwal, Sharir, and Welzl, 1998]. Our techniques yield a deterministic algorithm of $$O(n^{4/3}\log^{10/3} n\cdot (\log\log n)^{O(1)})$$ time and a randomized algorithm of $$O(n^{4/3}\log^3 n\cdot (\log\log n)^{1/3})$$ expected time.
Wang, Haitao
(, Journal of computational geometry)
We present new algorithms for computing many faces in arrangements of lines and segments. Given a set $$S$$ of $$n$$ lines (resp., segments) and a set $$P$$ of $$m$$ points in the plane, the problem is to compute the faces of the arrangements of $$S$$ that contain at least one point of $$P$$. For the line case, we give a deterministic algorithm of $$O(m^{2/3}n^{2/3}\log^{2/3} (n/\sqrt{m})+(m+n)\log n)$$ time. This improves the previously best deterministic algorithm [Agarwal, 1990] by a factor of $$\log^{2.22}n$$ and improves the previously best randomized algorithm [Agarwal, Matoušek, and Schwarzkopf, 1998] by a factor of $$\log^{1/3}n$$ in certain cases (e.g., when $$m=\Theta(n)$$). For the segment case, we present a deterministic algorithm of $$O(n^{2/3}m^{2/3}\log n+\tau(n\alpha^2(n)+n\log m+m)\log n)$$ time, where $$\tau=\min\{\log m,\log (n/\sqrt{m})\}$$ and $$\alpha(n)$$ is the inverse Ackermann function. This improves the previously best deterministic algorithm [Agarwal, 1990] by a factor of $$\log^{2.11}n$$ and improves the previously best randomized algorithm [Agarwal, Matoušek, and Schwarzkopf, 1998] by a factor of $$\log n$$ in certain cases (e.g., when $$m=\Theta(n)$$). We also give a randomized algorithm of $$O(m^{2/3}K^{1/3}\log n+\tau(n\alpha(n)+n\log m+m)\log n\log K)$$ expected time, where $$K$$ is the number of intersections of all segments of $$S$$. In addition, we consider the query version of the problem, that is, preprocess $$S$$ to compute the face of the arrangement of $$S$$ that contains any given query point. We present new results that improve the previous work for both the line and the segment cases. In particulary, for the line case, we build a data structure of $$O(n\log n)$$ space in $$O(n\log n)$$ randomized time, so that the face containing the query point can be obtained in $$O(\sqrt{n\log n})$$ time with high probability (more specifically, the query returns a binary search tree representing the face so that standard binary-search-based queries on the face can be handled in $$O(\log n)$$ time each and the face itself can be output explicitly in time linear in its size).
Chan, Timothy M; He, Qizheng; Xue, Jie
(, Proc. 40th Sympos. Computational Geometry (SoCG))
Mulzer, Wolfgang; Phillips, Jeff M
(Ed.)
Let X be a set of points in ℝ² and 𝒪 be a set of geometric objects in ℝ², where |X| + |𝒪| = n. We study the problem of computing a minimum subset 𝒪^* ⊆ 𝒪 that encloses all points in X. Here a point x ∈ X is enclosed by 𝒪^* if it lies in a bounded connected component of ℝ²∖(⋃_{O ∈ 𝒪^*} O). We propose two algorithmic frameworks to design polynomial-time approximation algorithms for the problem. The first framework is based on sparsification and min-cut, which results in O(1)-approximation algorithms for unit disks, unit squares, etc. The second framework is based on LP rounding, which results in an O(α(n)log n)-approximation algorithm for segments, where α(n) is the inverse Ackermann function, and an O(log n)-approximation algorithm for disks.
Chan, Timothy M.; Skrepetos, Dimitrios
(, Journal of computational geometry)
We present the first near-linear-time algorithm that computes a (1+ε)-approximation of the diameter of a weighted unit-disk graph of n vertices. Our algorithm requires O(n log^2 n) time for any constant ε>0, so we considerably improve upon the near-O(n^{3/2})-time algorithm of Gao and Zhang (2005). Using similar ideas we develop (1+ε)-approximate \emph{distance oracles} of O(1) query time with a likewise improvement in the preprocessing time, specifically from near O(n^{3/2}) to O(n log^3 n). We also obtain similar new results for a number of related problems in the weighted unit-disk graph metric such as the radius and the bichromatic closest pair. As a further application we employ our distance oracle, along with additional ideas, to solve the (1+ε)-approximate \emph{all-pairs bounded-leg shortest paths\/} (apBLSP) problem for a set of n planar points. Our data structure requires O(n^2 log n) space, O(loglog n) query time, and nearly O(n^{2.579}) preprocessing time for any constant ε>0, and is the first that breaks the near-cubic preprocessing time bound given by Roditty and Segal (2011).
Agarwal, Pankaj K., Cohen, Ravid, Halperin, Dan, and Mulzer, Wolfgang. Maintaining the Union of Unit Discs under Insertions with Near-Optimal Overhead. Retrieved from https://par.nsf.gov/biblio/10447608. ACM Transactions on Algorithms 18.3 Web. doi:10.1145/3527614.
Agarwal, Pankaj K., Cohen, Ravid, Halperin, Dan, & Mulzer, Wolfgang. Maintaining the Union of Unit Discs under Insertions with Near-Optimal Overhead. ACM Transactions on Algorithms, 18 (3). Retrieved from https://par.nsf.gov/biblio/10447608. https://doi.org/10.1145/3527614
Agarwal, Pankaj K., Cohen, Ravid, Halperin, Dan, and Mulzer, Wolfgang.
"Maintaining the Union of Unit Discs under Insertions with Near-Optimal Overhead". ACM Transactions on Algorithms 18 (3). Country unknown/Code not available. https://doi.org/10.1145/3527614.https://par.nsf.gov/biblio/10447608.
@article{osti_10447608,
place = {Country unknown/Code not available},
title = {Maintaining the Union of Unit Discs under Insertions with Near-Optimal Overhead},
url = {https://par.nsf.gov/biblio/10447608},
DOI = {10.1145/3527614},
abstractNote = {We present efficient dynamic data structures for maintaining the union of unit discs and the lower envelope of pseudo-lines in the plane. More precisely, we present three main results in this paper: (i) We present a linear-size data structure to maintain the union of a set of unit discs under insertions. It can insert a disc and update the union in O (( k +1)log 2 n ) time, where n is the current number of unit discs and k is the combinatorial complexity of the structural change in the union due to the insertion of the new disc. It can also compute, within the same time bound, the area of the union after the insertion of each disc. (ii) We propose a linear-size data structure for maintaining the lower envelope of a set of x -monotone pseudo-lines. It can handle insertion/deletion of a pseudo-line in O (log 2 n ) time; for a query point x 0 ∈ ℝ, it can report, in O (log n ) time, the point on the lower envelope with x -coordinate x 0 ; and for a query point q ∈ ℝ 2 , it can return all k pseudo-lines lying below q in time O (log n + k log 2 n ). (iii) We present a linear-size data structure for storing a set of circular arcs of unit radius (not necessarily on the boundary of the union of the corresponding discs), so that for a query unit disc D , all input arcs intersecting D can be reported in O ( n 1/2+ɛ + k ) time, where k is the output size and ɛ > 0 is an arbitrarily small constant. A unit-circle arc can be inserted or deleted in O (log 2 n ) time.},
journal = {ACM Transactions on Algorithms},
volume = {18},
number = {3},
author = {Agarwal, Pankaj K. and Cohen, Ravid and Halperin, Dan and Mulzer, Wolfgang},
}
Warning: Leaving National Science Foundation Website
You are now leaving the National Science Foundation website to go to a non-government website.
Website:
NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of
the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site.