skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: From kinetic to fluid models of liquid crystals by the moment method
This paper deals with the convergence of the Doi-Navier-Stokes model of liquid crystals to the Ericksen-Leslie model in the limit of the Deborah number tending to zero. While the literature has investigated this problem by means of the Hilbert expansion method, we develop the moment method, i.e. a method that exploits conservation relations obeyed by the collision operator. These are non-classical conservation relations which are associated with a new concept, that of Generalized Collision Invariant (GCI). In this paper, we develop the GCI concept and relate it to geometrical and analytical structures of the collision operator. Then, the derivation of the limit model using the GCI is performed in an arbitrary number of spatial dimensions and with non-constant and non-uniform polymer density. This non-uniformity generates new terms in the Ericksen-Leslie model.  more » « less
Award ID(s):
2106988
PAR ID:
10447716
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Kinetic and Related Models
Volume:
15
Issue:
3
ISSN:
1937-5093
Page Range / eLocation ID:
417
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we present a generalized, data-driven collisional operator for one-component plasmas, learned from molecular dynamics simulations, to extend the collisional kinetic model beyond the weakly coupled regime. The proposed operator features an anisotropic, non-stationary collision kernel that accounts for particle correlations typically neglected in classical Landau formulations. To enable efficient numerical evaluation, we develop a fast spectral separation method that represents the kernel as a low-rank tensor product of univariate basis functions. This formulation admits an O(N log N) algorithm via fast Fourier transforms and preserves key physical properties, including discrete conservation laws and the H-theorem, through a structure-preserving central difference discretization. Numerical experiments demonstrate that the proposed model accurately captures plasma dynamics in the moderately coupled regime beyond the standard Landau model while maintaining high computational efficiency and structure-preserving properties. 
    more » « less
  2. Abstract In this paper we describe the long‐time behavior of the non‐cutoff Boltzmann equation with soft potentials near a global Maxwellian background on the whole space in the weakly collisional limit (that is, infinite Knudsen number ). Specifically, we prove that for initial data sufficiently small (independent of the Knudsen number), the solution displays several dynamics caused by the phase mixing/dispersive effects of the transport operator and its interplay with the singular collision operator. For ‐wavenumbers with , one sees anenhanced dissipationeffect wherein the characteristic decay time‐scale is accelerated to , where is the singularity of the kernel ( being the Landau collision operator, which is also included in our analysis); for , one seesTaylor dispersion, wherein the decay time‐scale is accelerated to . Additionally, we prove almost uniform phase mixing estimates. For macroscopic quantities such as the density , these bounds imply almost uniform‐in‐ decay of in due to phase mixing and dispersive decay. 
    more » « less
  3. Motivated by the open problem of large-data global existence for the non-cutoff Boltzmann equation, we introduce a model equation that in some sense disregards the anisotropy of the Boltzmann collision kernel. We refer to this model equation as isotropic Boltzmann by analogy with the isotropic Landau equation introduced by Krieger and Strain (2012) [35]. The collision operator of our isotropic Boltzmann model converges to the isotropic Landau collision operator under a scaling limit that is analogous to the grazing collisions limit connecting (true) Boltzmann with (true) Landau. Our main result is global existence for the isotropic Boltzmann equation in the space homogeneous case, for certain parts of the “very soft potentials” regime in which global existence is unknown for the space homogeneous Boltzmann equation. The proof strategy is inspired by the work of Gualdani and Guillen (2022) [22] on isotropic Landau, and makes use of recent progress on weighted fractional Hardy inequalities. 
    more » « less
  4. In this tutorial, a derivation of magnetohydrodynamics (MHD) valid beyond the usual ideal gas approximation is presented. Non-equilibrium thermodynamics is used to obtain conservation equations and linear constitutive relations. When coupled with Maxwell's equations, this provides closed fluid equations in terms of material properties of the plasma, described by the equation of state and transport coefficients. These properties are connected to microscopic dynamics using the Irving–Kirkwood procedure and Green–Kubo relations. Symmetry arguments and the Onsager–Casimir relations allow one to vastly simplify the number of independent coefficients. Importantly, expressions for current density, heat flux, and stress (conventionally Ohm's law, Fourier's law, and Newton's law) take different forms in systems with a non-ideal equation of state. The traditional form of the MHD equations, which is usually obtained from a Chapman–Enskog solution of the Boltzmann equation, corresponds to the ideal gas limit of the general equations. 
    more » « less
  5. We devise a novel formulation and propose the concept of modal participation factors to nonlinear dynamical systems. The original definition of modal participation factors (or simply participation factors) provides a simple yet effective metric. It finds use in theory and practice, quantifying the interplay between states and modes of oscillation in a linear time-invariant (LTI) system. In this paper, with the Koopman operator framework, we present the results of participation factors for nonlinear dynamical systems with an asymptotically stable equilibrium point or limit cycle. We show that participation factors are defined for the entire domain of attraction, beyond the vicinity of an attractor, where the original definition of participation factors for LTI systems is a special case. Finally, we develop a numerical method to estimate participation factors using time series data from the underlying nonlinear dynamical system. The numerical method can be implemented by leveraging a well-established numerical scheme in the Koopman operator framework called dynamic mode decomposition. 
    more » « less