skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Skew and sphere fibrations
A great sphere fibration is a sphere bundle with total space S n S^n and fibers which are great k k -spheres. Given a smooth great sphere fibration, the central projection to any tangent hyperplane yields a nondegenerate fibration of R n \mathbb {R}^n by pairwise skew, affine copies of R k \mathbb {R}^k (though not all nondegenerate fibrations can arise in this way). Here we study the topology and geometry of nondegenerate fibrations, we show that every nondegenerate fibration satisfies a notion of Continuity at Infinity, and we prove several classification results. These results allow us to determine, in certain dimensions, precisely which nondegenerate fibrations correspond to great sphere fibrations via the central projection. We use this correspondence to reprove a number of recent results about sphere fibrations in the simpler, more explicit setting of nondegenerate fibrations. For example, we show that every germ of a nondegenerate fibration extends to a global fibration, and we study the relationship between nondegenerate line fibrations and contact structures in odd-dimensional Euclidean space. We conclude with a number of partial results, in hopes that the continued study of nondegenerate fibrations, together with their correspondence with sphere fibrations, will yield new insights towards the unsolved classification problems for sphere fibrations.  more » « less
Award ID(s):
1926686
PAR ID:
10447754
Author(s) / Creator(s):
Date Published:
Journal Name:
Transactions of the American Mathematical Society
ISSN:
0002-9947
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We show that if an open set in $$\mathbb R^d$$ can be fibered by unit $$n$$-spheres, then $$d\le 2n+1$$, and if $d=2n+1$, then the spheres must be pairwise linked, and $$n\in \{0,1,3,7\}$$. For these values of $$n$$, we construct unit $$n$$-sphere fibrations in $$R^{2n+1}$$. 
    more » « less
  2. Abstract In 1980 Carleson posed a question on the minimal regularity of an initial data function in a Sobolev space $$H^s({\mathbb {R}}^n)$$ that implies pointwise convergence for the solution of the linear Schrödinger equation. After progress by many authors, this was recently resolved (up to the endpoint) by Bourgain, whose counterexample construction for the Schrödinger maximal operator proved a necessary condition on the regularity, and Du and Zhang, who proved a sufficient condition. Analogues of Carleson’s question remain open for many other dispersive partial differential equations. We develop a flexible new method to approach such problems and prove that for any integer $$k\geq 2$$, if a degree $$k$$ generalization of the Schrödinger maximal operator is bounded from $$H^s({\mathbb {R}}^n)$$ to $$L^1(B_n(0,1))$$, then $$s \geq \frac {1}{4} + \frac {n-1}{4((k-1)n+1)}.$$ In dimensions $$n \geq 2$$, for every degree $$k \geq 3$$, this is the first result that exceeds a long-standing barrier at $1/4$. Our methods are number-theoretic, and in particular apply the Weil bound, a consequence of the truth of the Riemann Hypothesis over finite fields. 
    more » « less
  3. Abstract We construct a single smooth orthogonal projection with desired localization whose average under a group action yields the decomposition of the identity operator. For any full rank lattice $$\Gamma \subset \mathbb {R}^d$$ Γ ⊂ R d , a smooth projection is localized in a neighborhood of an arbitrary precompact fundamental domain $$\mathbb {R}^d/\Gamma $$ R d / Γ . We also show the existence of a highly localized smooth orthogonal projection, whose Marcinkiewicz average under the action of SO ( d ), is a multiple of the identity on $$L^2(\mathbb {S}^{d-1})$$ L 2 ( S d - 1 ) . As an application we construct highly localized continuous Parseval frames on the sphere. 
    more » « less
  4. This paper is the first of a pair that aims to classify a large number of the type I I II quantum subgroups of the categories C ( s l r + 1 , k ) \mathcal {C}(\mathfrak {sl}_{r+1}, k) . In this work we classify the braided auto-equivalences of the categories of local modules for all known type I I quantum subgroups of C ( s l r + 1 , k ) \mathcal {C}(\mathfrak {sl}_{r+1}, k) . We find that the symmetries are all non-exceptional except for four cases (up to level-rank duality). These exceptional cases are the orbifolds C ( s l 2 , 16 ) Rep ⁡ ( Z 2 ) 0 \mathcal {C}(\mathfrak {sl}_{2}, 16)^0_{\operatorname {Rep}(\mathbb {Z}_{2})} , C ( s l 3 , 9 ) Rep ⁡ ( Z 3 ) 0 \mathcal {C}(\mathfrak {sl}_{3}, 9)^0_{\operatorname {Rep}(\mathbb {Z}_{3})} , C ( s l 4 , 8 ) Rep ⁡ ( Z 4 ) 0 \mathcal {C}(\mathfrak {sl}_{4}, 8)^0_{\operatorname {Rep}(\mathbb {Z}_{4})} , and C ( s l 5 , 5 ) Rep ⁡ ( Z 5 ) 0 \mathcal {C}(\mathfrak {sl}_{5}, 5)^0_{\operatorname {Rep}(\mathbb {Z}_{5})} . We develop several technical tools in this work. We give a skein theoretic description of the orbifold quantum subgroups of C ( s l r + 1 , k ) \mathcal {C}(\mathfrak {sl}_{r+1}, k) . Our methods here are general, and the techniques developed will generalise to give skein theory for any orbifold of a braided tensor category. We also give a formulation of orthogonal level-rank duality in the type D D - D D case, which is used to construct one of the exceptionals. We uncover an unexpected connection between quadratic categories and exceptional braided auto-equivalences of the orbifolds. We use this connection to construct two of the four exceptionals. In the sequel to this paper we will use the classified braided auto-equivalences to construct the corresponding type I I II quantum subgroups of the categories C ( s l r + 1 , k ) \mathcal {C}(\mathfrak {sl}_{r+1}, k) . This will essentially finish the type I I II classification for s l n \mathfrak {sl}_n modulo type I I classification. When paired with Gannon’s type I I classification for r ≤ 6 r\leq 6 , our results will complete the type I I II classification for these same ranks. This paper includes an appendix by Terry Gannon, which provides useful results on the dimensions of objects in the categories C ( s l r + 1 , k ) \mathcal {C}(\mathfrak {sl}_{r+1}, k) . 
    more » « less
  5. Abstract Given a sequence $$\{Z_d\}_{d\in \mathbb{N}}$$ of smooth and compact hypersurfaces in $${\mathbb{R}}^{n-1}$$, we prove that (up to extracting subsequences) there exists a regular definable hypersurface $$\Gamma \subset {\mathbb{R}}\textrm{P}^n$$ such that each manifold $$Z_d$$ is diffeomorphic to a component of the zero set on $$\Gamma$$ of some polynomial of degree $$d$$. (This is in sharp contrast with the case when $$\Gamma$$ is semialgebraic, where for example the homological complexity of the zero set of a polynomial $$p$$ on $$\Gamma$$ is bounded by a polynomial in $$\deg (p)$$.) More precisely, given the above sequence of hypersurfaces, we construct a regular, compact, semianalytic hypersurface $$\Gamma \subset {\mathbb{R}}\textrm{P}^{n}$$ containing a subset $$D$$ homeomorphic to a disk, and a family of polynomials $$\{p_m\}_{m\in \mathbb{N}}$$ of degree $$\deg (p_m)=d_m$$ such that $$(D, Z(p_m)\cap D)\sim ({\mathbb{R}}^{n-1}, Z_{d_m}),$$ i.e. the zero set of $$p_m$$ in $$D$$ is isotopic to $$Z_{d_m}$$ in $${\mathbb{R}}^{n-1}$$. This says that, up to extracting subsequences, the intersection of $$\Gamma$$ with a hypersurface of degree $$d$$ can be as complicated as we want. We call these ‘pathological examples’. In particular, we show that for every $$0 \leq k \leq n-2$$ and every sequence of natural numbers $$a=\{a_d\}_{d\in \mathbb{N}}$$ there is a regular, compact semianalytic hypersurface $$\Gamma \subset {\mathbb{R}}\textrm{P}^n$$, a subsequence $$\{a_{d_m}\}_{m\in \mathbb{N}}$$ and homogeneous polynomials $$\{p_{m}\}_{m\in \mathbb{N}}$$ of degree $$\deg (p_m)=d_m$$ such that (0.1)$$\begin{equation}b_k(\Gamma\cap Z(p_m))\geq a_{d_m}.\end{equation}$$ (Here $$b_k$$ denotes the $$k$$th Betti number.) This generalizes a result of Gwoździewicz et al. [13]. On the other hand, for a given definable $$\Gamma$$ we show that the Fubini–Study measure, in the Gaussian probability space of polynomials of degree $$d$$, of the set $$\Sigma _{d_m,a, \Gamma }$$ of polynomials verifying (0.1) is positive, but there exists a constant $$c_\Gamma$$ such that $$\begin{equation*}0<{\mathbb{P}}(\Sigma_{d_m, a, \Gamma})\leq \frac{c_{\Gamma} d_m^{\frac{n-1}{2}}}{a_{d_m}}.\end{equation*}$$ This shows that the set of ‘pathological examples’ has ‘small’ measure (the faster $$a$$ grows, the smaller the measure and pathologies are therefore rare). In fact we show that given $$\Gamma$$, for most polynomials a Bézout-type bound holds for the intersection $$\Gamma \cap Z(p)$$: for every $$0\leq k\leq n-2$$ and $t>0$: $$\begin{equation*}{\mathbb{P}}\left(\{b_k(\Gamma\cap Z(p))\geq t d^{n-1} \}\right)\leq \frac{c_\Gamma}{td^{\frac{n-1}{2}}}.\end{equation*}$$ 
    more » « less