Title: Frameworks for Student Research Engagement on Interdisciplinary Civic-Engaged Projects
Broadband infrastructure in urban parks may serve crucial functions including an amenity to boost overall park use and a bridge to propagate WiFi access into contiguous neighborhoods. This project: SCC:PG Park WiFi as a BRIDGE to Community Resilience has developed a new model —Build Resilience through the Internet and Digital Greenspace Exposure, leveraging off-the-shelf WiFi technology, novel algorithms, community assets, and local partnerships to lower greenspace WiFi costs. This interdisciplinary work leverages: computer science, information studies, landscape architecture, and public health. Collaboration methodologies and relational definitions across disciplines are still nascent —especially when paired with civic-engaged, applied research. Student researchers (UG/Grad) are excellent partners in bridging disciplinary barriers and constraints. Their capacity to assimilate multiple frameworks has produced refinements to the project’s theoretical lenses and suggested novel socio-technical methodology improvements. Further, they are excellent ambassadors to community partners and stakeholders. In BRIDGE, we tested two mechanisms to augment student research participation. In both, we leveraged a classic, curriculum-based model named the Partnership for Action Learning in Sustainability program (PALS). This campus-wide, community-engaged initiative pairs faculty and students with community partners. PALS curates economic, environmental, and social sustainability challenges and scopes projects to customize appropriate coursework that addresses identified challenges. Outcomes include: literature searches, wireframes, and design plans that target solutions to civic problems. Constraints include the short semester timeframe and curriculum-learning-outcome constraints. (1) On BRIDGE, Dr. Kweon executed a semester-based Landscape Architecture PALS 400-level-studio. 18 undergraduates conducted in-class and in-field work to assess community needs and proposed design solutions for future park-wide WiFi. Research topics included: community-park history, neighborhood demographics, case-study analysis, and land-cover characteristics. The students conducted an in-Park, community engagement session —via interactive posterboard surveys, to gain input on what park amenities might be redesigned or added to promote WiFi use. The students then produced seven re-design plans; one included a café/garden, with an eco-corridor that integrated technology with nature. (2) From the classic, curriculum-based PALS model we created a summer-intensive for our five research assistants, to stimulate interdisciplinary collaboration in their research tasks and co-analysis of project data products: experimental technical WiFi-setup, community survey results, and stakeholder needs-assessments. Students met weekly with each other and team leadership, exchanged journal articles, and attended joint research events. This model shows promise for integrating students more formally into an interdisciplinary research project. An end-of-intensive focus group highlighted, from the students’ perspective, the pro/cons of this model. Results: In contrasting the two mechanisms, our results include: Model 1 is tried-and-trued and produces standardized, reliable products. However, as work is group based, student independence is limited —to explore topics/themes of interest. Civic groups are typically thrilled with the diversity of action plans produced. Model 2 provides greater independence in student-learning outcomes, fosters interdisciplinary, “dictionary-building” that can be used by the full team, deepens methodological approaches, and allows for student stipend payments. Lessons learned: intensive time frame needed more research team support and ideally should be extended, when possible, over the full project-span. UMD-IRB#1785365-4; NSF-award: 2125526. more »« less
Adkins-Jablonsky, Sarah J.; Akscyn, Rob; Bennett, Brad C.; Roberts, Qutia; Morris, J. Jeffrey
(, Frontiers in Microbiology)
null
(Ed.)
Course-based undergraduate research experiences (CUREs) often involve a component where the outcomes of student research are broadly relevant to outside stakeholders. We wanted to see if building courses around an environmental justice issue relevant to the local community would impact students’ sense of civic engagement and appreciation of the relevance of scientific research to the community. In this quasi-experimental study, we assessed civic engagement and scientific identity gains ( N = 98) using pre- and post-semester surveys and open-ended interview responses in three different CUREs taught simultaneously at three different universities. All three CURES were focused on an environmental heavy metal pollution issue predominantly affecting African–Americans in Birmingham, Alabama. While we found increases in students’ sense of science efficacy and identity, our team was unable to detect meaningful changes in civic engagement levels, all of which were initially quite high. However, interviews suggested that students were motivated to do well in their research because the project was of interest to outside stakeholders. Our observations suggest that rather than directly influencing students’ civic engagement, the “broadly relevant” component of our CUREs engaged their pre-existing high levels of engagement to increase their engagement with the material, possibly influencing gains in science efficacy and science identity. Our observations are consistent with broader community relevance being an important component of CURE success, but do not support our initial hypothesis that CURE participation would influence students’ attitudes toward the civic importance of science.
Peek, Lori; Tobin, Jennifer; Lindt, John W.; Andrews, Anne
(, Risk Analysis)
null
(Ed.)
This article describes an interdisciplinary community resilience research project and presents a case study that supports bringing researchers together before a disaster to develop plans, procedures, and preapproved Institutional Review Board (IRB) protocols. In addition, this article explains how researchers from various academic institutions and their federal agency partners can effectively collaborate by creating an IRB Authorization Agreement (IAA). Such preparations can support interdisciplinary rapid response disaster fieldwork that is timely, ethically informed, and scientifically rigorous. This fieldwork preplanning process can also advance interdisciplinary team formation and data collection efforts over the long term.
Balgord, Elizabeth; Frantz, Carie M.; Matyjasik, Marek
(, Geological Society of America Abstracts with Programs)
The Geoscience Education Targeting Underrepresented Populations program is a National Science Foundation funded project designed to assess the effectiveness of a multifaceted approach to increase recruitment and retention in Earth & Environmental Science (EES) majors at Weber State University (WSU) in Ogden, Utah. This program integrates a combination of early outreach to high schools, concurrent-enrollment courses, a summer bridge program, structured early undergraduate research experiences, community engaged learning, and multiple pedagogies to support a diverse student population. The focus of this presentation will be on the place-based educational approach to teaching an Earth science summer bridge program and a first-year summer research experience. These programs overlap in both time and location allowing incoming students to have peer-to-peer interactions with current EES majors. The summer bridge program runs for two weeks and provides students with an introduction to the WSU campus, available student services, initial advising, and an early collaborative research experience focused on local natural hazards and the Great Salt Lake basin water resources. Students collect water samples from Great Salt Lake, local streams, and a groundwater well field on WSU’s campus. Students then analyze major element chemistry of those samples with the help of faculty and students in the EES department using lab facilities at WSU. The summer research program is a four-week summer program for freshmen and sophomores who have declared an EES major. Students conduct in-depth field and lab research project on the Great Salt Lake ecosystem, using real-time geochemical data collected from field observatories on Antelope Island State Park. Students work as a team with a faculty lead and senior peer teaching assistants to address a research question by analyzing field station data as well as collecting and analyzing environmental chemistry and microbiology samples from the lake, including alkalinity, inorganic and organic carbon, major ions, cell counts, and photosynthetic efficiency. The summer research students also act as peer mentors for students in the Summer Bridge. All students present their research finding to friends and family at a celebratory event on the last day of both programs. We will present on the successes and challenges of the program to date and our plans to assess various components and their overall impact on student recruitment and retention in our department.
Howland Cummings, M.; Darbeheshti, M.; Ivey, S.; Stewart, C.; Russomanno, D.; King, D.; Goodman, K.; Campbell, J.; Altman, T.; Jacobson, M.; et al
(, ASEE Annual Conference proceedings)
This Complete Evidence-based Practice paper will describe how three different public urban research universities designed, executed, and iterated Summer Bridge programming for a subset of incoming first-year engineering students over the course of three consecutive years. There were commonalities between each institution’s Summer Bridge, as well as unique aspects catering to the specific needs and structures of each institution. Both these commonalities and unique aspects will be discussed, in addition to the processes of iteration and improvement, target student populations, and reported student outcomes. Finally, recommendations for other institutions seeking to launch or refine similar programming will be shared. Summer Bridge programming at each of the three institutions shared certain communalities. Mostly notably, each of the three institutions developed its Summer Bridge as an additional way to provide support for students receiving an NSF S-STEM scholarship. The purpose of each Summer Bridge was to build community among these students, prepare them for the academic rigor of first-year engineering curriculum, and edify their STEM identity and sense of belonging. Each Summer Bridge was a 3-5 day experience held in the week immediately prior to the start of the Fall semester. In addition to these communalities, each Summer Bridge also had its own unique features. At the first institution, Summer Bridge is focused on increasing college readiness through the transition from summer break into impending coursework. This institution’s Summer Bridge includes STEM special-interest presentations (such as biomedical or electrical engineering) and other development activities (such as communication and growth mindset workshops). Additionally, this institution’s Summer Bridge continues into the fall semester via a 1-credit hour First Year Seminar class, which builds and reinforces student networking and community beyond the summer experience. At the second institution, all students receiving the NSF S-STEM scholarship (not only those who are first-year students) participate in Summer Bridge. This means that S-STEM scholars at this institution participate in Summer Bridge multiple years in a row. Relatedly, after the first year, Summer Bridge transitioned to a student-led and student-delivered program, affording sophomore and junior students leadership opportunities, which not only serve as marketable experience after graduation, but also further builds their sense of STEM identity and belonging. At the third institution, a special focus was given to building community. This was achieved through several means. First, each day of Summer Bridge included a unique team-oriented design challenge where students got to work together and know each other within an engineering context, also reinforcing their STEM identities. Second, students at this institution’s Summer Bridge met their future instructors in an informal, conversational, lunch setting; many students reported this was one of their favorite aspects of Summer Bridge. Finally, Summer Bridge facilitated a first connect between incoming first-year students and their peer mentors (sophomore and junior students also receiving the NSF S-STEM scholarship), with whom they would meet regularly throughout the following fall and spring semesters. Each of the three institutions employed processes of iteration and improvement for their Summer Bridge programming over the course of two or three consecutive years. Through each version and iteration of Summer Bridge, positive student outcomes are demonstrated, including direct student feedback indicating built community among students and the perception that their time spent during Summer Bridge was valuable. Based on the experiences of these three institutions, as well as research on other institutions’ Summer Bridge programming, recommendations for those seeking to launch or refine similar Summer Bridge programming will also be shared.
Lesko, H. L.; Grohs, J. R.; Matusovich, H. M.; Kirk, G. R.; Carrico, C.; van Montfrans, V.; Gillen, A. L.; Paradise, T.; Blackowski, S. A.; Baum, L. M.
(, ASEE Annual Conference proceedings)
Our NSF-funded ITEST project focuses on the collaborative design, implementation, and study of recurrent hands-on engineering activities with middle school youth in three rural communities in or near Appalachia. To achieve this aim, our team of faculty and graduate students partner with school educators and industry experts embedded in students’ local communities to collectively develop curriculum to aim at teacher-identified science standard and facilitate regular in-class interventions throughout the academic year. Leveraging local expertise is especially critical in this project because family pressures, cultural milieu, and preference for local, stable jobs play considerable roles in how Appalachian youth choose possible careers. Our partner communities have voluntarily opted to participate with us in a shared implementation-research program and as our project unfolds we are responsive to community-identified needs and preferences while maintaining the research program’s integrity. Our primary focus has been working to incorporate hands-on activities into science classrooms aimed at state science standards in recognition of the demands placed on teachers to align classroom time with state standards and associated standardized achievement tests. Our focus on serving diverse communities while being attentive to relevant research such as the preference for local, stable jobs attention to cultural relevance led us to reach out to advanced manufacturing facilities based in the target communities in order to enhance the connection students and teachers feel to local engineers. Each manufacturer has committed to designating several employees (engineers) to co-facilitate interventions six times each academic year. Launching our project has involved coordination across stakeholder groups to understand distinct values, goals, strengths and needs. In the first academic year, we are working with 9 different 6th grade science teachers across 7 schools in 3 counties. Co-facilitating in the classroom are representatives from our project team, graduate student volunteers from across the college of engineering, and volunteering engineers from our three industry partners. Developing this multi-stakeholder partnership has involved discussions and approvals across both school systems (e.g., superintendents, STEM coordinators, teachers) and our industry partners (e.g., managers, HR staff, volunteering engineers). The aim of this engagement-in-practice paper is to explore our lessons learned in navigating the day-to-day challenges of (1) developing and facilitating curriculum at the intersection of science standards, hands-on activities, cultural relevancy, and engineering thinking, (2) collaborating with volunteers from our industry partners and within our own college of engineering in order to deliver content in every science class of our 9 6th grade teachers one full school day/month, and (3) adapting to emergent needs that arise due to school and division differences (e.g., logistics of scheduling and curriculum pacing), community differences across our three counties (e.g., available resources in schools), and partner constraints.
Kweon, Byoung-Suk, Belle, Lauren, Fisher, Kim, Burke, Tara, Haghtalab, Joy, Roy, Nirupam, Bonsignore, Elizabeth, Sachs, Naomi, and Roberts, Jennifer. Frameworks for Student Research Engagement on Interdisciplinary Civic-Engaged Projects. Retrieved from https://par.nsf.gov/biblio/10447758. The International Network for the Science of Team Science (INSciTS) .
Kweon, Byoung-Suk, Belle, Lauren, Fisher, Kim, Burke, Tara, Haghtalab, Joy, Roy, Nirupam, Bonsignore, Elizabeth, Sachs, Naomi, & Roberts, Jennifer. Frameworks for Student Research Engagement on Interdisciplinary Civic-Engaged Projects. The International Network for the Science of Team Science (INSciTS), (). Retrieved from https://par.nsf.gov/biblio/10447758.
Kweon, Byoung-Suk, Belle, Lauren, Fisher, Kim, Burke, Tara, Haghtalab, Joy, Roy, Nirupam, Bonsignore, Elizabeth, Sachs, Naomi, and Roberts, Jennifer.
"Frameworks for Student Research Engagement on Interdisciplinary Civic-Engaged Projects". The International Network for the Science of Team Science (INSciTS) (). Country unknown/Code not available. https://par.nsf.gov/biblio/10447758.
@article{osti_10447758,
place = {Country unknown/Code not available},
title = {Frameworks for Student Research Engagement on Interdisciplinary Civic-Engaged Projects},
url = {https://par.nsf.gov/biblio/10447758},
abstractNote = {Broadband infrastructure in urban parks may serve crucial functions including an amenity to boost overall park use and a bridge to propagate WiFi access into contiguous neighborhoods. This project: SCC:PG Park WiFi as a BRIDGE to Community Resilience has developed a new model —Build Resilience through the Internet and Digital Greenspace Exposure, leveraging off-the-shelf WiFi technology, novel algorithms, community assets, and local partnerships to lower greenspace WiFi costs. This interdisciplinary work leverages: computer science, information studies, landscape architecture, and public health. Collaboration methodologies and relational definitions across disciplines are still nascent —especially when paired with civic-engaged, applied research. Student researchers (UG/Grad) are excellent partners in bridging disciplinary barriers and constraints. Their capacity to assimilate multiple frameworks has produced refinements to the project’s theoretical lenses and suggested novel socio-technical methodology improvements. Further, they are excellent ambassadors to community partners and stakeholders. In BRIDGE, we tested two mechanisms to augment student research participation. In both, we leveraged a classic, curriculum-based model named the Partnership for Action Learning in Sustainability program (PALS). This campus-wide, community-engaged initiative pairs faculty and students with community partners. PALS curates economic, environmental, and social sustainability challenges and scopes projects to customize appropriate coursework that addresses identified challenges. Outcomes include: literature searches, wireframes, and design plans that target solutions to civic problems. Constraints include the short semester timeframe and curriculum-learning-outcome constraints. (1) On BRIDGE, Dr. Kweon executed a semester-based Landscape Architecture PALS 400-level-studio. 18 undergraduates conducted in-class and in-field work to assess community needs and proposed design solutions for future park-wide WiFi. Research topics included: community-park history, neighborhood demographics, case-study analysis, and land-cover characteristics. The students conducted an in-Park, community engagement session —via interactive posterboard surveys, to gain input on what park amenities might be redesigned or added to promote WiFi use. The students then produced seven re-design plans; one included a café/garden, with an eco-corridor that integrated technology with nature. (2) From the classic, curriculum-based PALS model we created a summer-intensive for our five research assistants, to stimulate interdisciplinary collaboration in their research tasks and co-analysis of project data products: experimental technical WiFi-setup, community survey results, and stakeholder needs-assessments. Students met weekly with each other and team leadership, exchanged journal articles, and attended joint research events. This model shows promise for integrating students more formally into an interdisciplinary research project. An end-of-intensive focus group highlighted, from the students’ perspective, the pro/cons of this model. Results: In contrasting the two mechanisms, our results include: Model 1 is tried-and-trued and produces standardized, reliable products. However, as work is group based, student independence is limited —to explore topics/themes of interest. Civic groups are typically thrilled with the diversity of action plans produced. Model 2 provides greater independence in student-learning outcomes, fosters interdisciplinary, “dictionary-building” that can be used by the full team, deepens methodological approaches, and allows for student stipend payments. Lessons learned: intensive time frame needed more research team support and ideally should be extended, when possible, over the full project-span. UMD-IRB#1785365-4; NSF-award: 2125526.},
journal = {The International Network for the Science of Team Science (INSciTS)},
author = {Kweon, Byoung-Suk and Belle, Lauren and Fisher, Kim and Burke, Tara and Haghtalab, Joy and Roy, Nirupam and Bonsignore, Elizabeth and Sachs, Naomi and Roberts, Jennifer.},
}
Warning: Leaving National Science Foundation Website
You are now leaving the National Science Foundation website to go to a non-government website.
Website:
NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of
the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site.