skip to main content


This content will become publicly available on August 3, 2024

Title: Imaging Field‐Driven Melting of a Molecular Solid at the Atomic Scale
Abstract Solid–liquid phase transitions are basic physical processes, but atomically resolved microscopy has yet to capture their full dynamics. A new technique is developed for controlling the melting and freezing of self‐assembled molecular structures on a graphene field‐effect transistor (FET) that allows phase‐transition behavior to be imaged using atomically resolved scanning tunneling microscopy. This is achieved by applying electric fields to 2,3,5,6‐tetrafluoro‐7,7,8,8‐tetracyanoquinodimethane‐decorated FETs to induce reversible transitions between molecular solid and liquid phases at the FET surface. Nonequilibrium melting dynamics are visualized by rapidly heating the graphene substrate with an electrical current and imaging the resulting evolution toward new 2D equilibrium states. An analytical model is developed that explains observed mixed‐state phases based on spectroscopic measurement of solid and liquid molecular energy levels. The observed nonequilibrium melting dynamics are consistent with Monte Carlo simulations.  more » « less
Award ID(s):
2204252
NSF-PAR ID:
10447880
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Advanced Materials
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. LiCoO2 is a prime example of widely used cathodes that suffer from the structural/thermal instability issues that lead to the release of their lattice oxygen under nonequilibrium conditions and safety concerns in Li‐ion batteries. Here, it is shown that an atomically thin layer of reduced graphene oxide can suppress oxygen release from LixCoO2 particles and improve their structural stability. Electrochemical cycling, differential electrochemical mass spectroscopy, differential scanning calorimetry, and in situ heating transmission electron microscopy are performed to characterize the effectiveness of the graphene‐coating on the abusive tolerance of LixCoO2. Electrochemical cycling mass spectroscopy results suggest that oxygen release is hindered at high cutoff voltage cycling when the cathode is coated with reduced graphene oxide. Thermal analysis, in situ heating transmission electron microscopy, and electron energy loss spectroscopy results show that the reduction of Co species from the graphene‐coated samples is delayed when compared with bare cathodes. Finally, density functional theory and ab initio molecular dynamics calculations show that the rGO layers could suppress O2 formation more effectively due to the strong Co cathode bond formation at the interface of rGO/LCO where low coordination oxygens exist. This investigation uncovers a reliable approach for hindering the oxygen release reaction and improving the thermal stability of battery cathodes. 
    more » « less
  2. Abstract

    LiCoO2is a prime example of widely used cathodes that suffer from the structural/thermal instability issues that lead to the release of their lattice oxygen under nonequilibrium conditions and safety concerns in Li‐ion batteries. Here, it is shown that an atomically thin layer of reduced graphene oxide can suppress oxygen release from LixCoO2particles and improve their structural stability. Electrochemical cycling, differential electrochemical mass spectroscopy, differential scanning calorimetry, and in situ heating transmission electron microscopy are performed to characterize the effectiveness of the graphene‐coating on the abusive tolerance of LixCoO2. Electrochemical cycling mass spectroscopy results suggest that oxygen release is hindered at high cutoff voltage cycling when the cathode is coated with reduced graphene oxide. Thermal analysis, in situ heating transmission electron microscopy, and electron energy loss spectroscopy results show that the reduction of Co species from the graphene‐coated samples is delayed when compared with bare cathodes. Finally, density functional theory and ab initio molecular dynamics calculations show that the rGO layers could suppress O2formation more effectively due to the strong COcathodebond formation at the interface of rGO/LCO where low coordination oxygens exist. This investigation uncovers a reliable approach for hindering the oxygen release reaction and improving the thermal stability of battery cathodes.

     
    more » « less
  3. The separation of substances into different phases is ubiquitous in nature and important scientifically and technologically. This phenomenon may become drastically different if the species involved, whether molecules or supramolecular assemblies, interconvert. In the presence of an external force large enough to overcome energetic differences between the interconvertible species (forced interconversion), the two alternative species will be present in equal amounts, and the striking phenomenon of steady-state, restricted phase separation into mesoscales is observed. Such microphase separation is one of the simplest examples of dissipative structures in condensed matter. In this work, we investigate the formation of such mesoscale steady-state structures through Monte Carlo and molecular dynamics simulations of three physically distinct microscopic models of binary mixtures that exhibit both equilibrium (natural) interconversion and a nonequilibrium source of forced interconversion. We show that this source can be introduced through an internal imbalance of intermolecular forces or an external flux of energy that promotes molecular interconversion, possible manifestations of which could include the internal nonequilibrium environment of living cells or a flux of photons. The main trends and observations from the simulations are well captured by a nonequilibrium thermodynamic theory of phase transitions affected by interconversion. We show how a nonequilibrium bicontinuous microemulsion or a spatially modulated state may be generated depending on the interplay between diffusion, natural interconversion, and forced interconversion. 
    more » « less
  4. We employ force-field molecular dynamics simulations to investigate the kinetics of nucleation to new liquid or solid phases in a dense gas of particles, seeded with ions. We use precise atomic pair interactions, with physically correct long-range behaviour, between argon atoms and protons. Time dependence of molecular cluster formation is analysed at different proton concentration, temperature and argon gas density. The modified phase transitions with proton seeding of the argon gas are identified and analysed. The seeding of the gas enhances the formation of nano-size atomic clusters and their aggregation. The strong attraction between protons and bath gas atoms stabilises large nano-clusters and the critical temperature for evaporation. An analytical model is proposed to describe the stability of argon-proton droplets and is compared with the molecular dynamics simulations. 
    more » « less
  5. A molten metal is an atomic liquid that lacks directional bonding and is free from chemical ordering effects. Experimentally, liquid metals can be undercooled by up to ∼20% of their melting temperature but crystallize rapidly in subnanosecond time scales at deeper undercooling. To address this limited metastability with respect to crystallization, we employed molecular dynamics simulations to study the thermodynamics and kinetics of the glass transition and crystallization in deeply undercooled liquid Ag. We present direct evidence that undercooled liquid Ag undergoes a first-order configurational freezing transition from the high-temperature homogeneous disordered liquid phase (L) to a metastable, heterogeneous, configura-tionally ordered state that displays elastic rigidity with a persistent and finite shear modulus, μ. We designate this ordered state as the G-phase and conclude it is a metastable non-crystalline phase. We show that the L−G transition occurs by nucleation of the G-phase from the L-phase. Both te L- and G-phases are metastable because both ultimately crystallize. The observed first-order transition is reversible: the G-phase displays a first-order melting transition to the L-phase at a coexistence temperature, TG,M. We develop a thermodynamic description of the two phases and their coexistence boundary. 
    more » « less