Abstract To investigate how bedrock transforms to soil, we mapped the topography of the interface demarcating onset of weathering under an east‐west trending shale watershed in the Valley and Ridge province in the USA Using wave equation travel‐time tomography from a seismic array of >4,000 geophones, we obtained a 3D P‐wave velocity (Vp) model that resolves structures ∼20 m below land surface (mbls). The depth of mobile soil and the onset of dissolution of chlorite roughly match Vp = 600 m/s and Vp = 2,700 m/s, respectively. Chlorite dissolution initiates porosity growth in the shale matrix. Depth to the 2,700 m/s contour is greater under the N‐ as compared to S‐facing hillslopes and under sub‐planar as compared to concave‐up land surfaces. Broadly, the geometries of the ‘soil’ and ‘chlorite’ Vp contours are consistent with the calculated potential for shear fracture opening under weak regional compression. However, this calculated fracture potential does not consistently explain observations related to N‐ versus S‐facing aspect nor fracture density observed by borehole televiewer. Apparently, regional compression is only a secondary influence on Vp: the primary driver of P‐wave slowing in the upper layers of this catchment is topographic control of reactive water flowpaths and their integrated effects on weathering. The Vp result is best explained as the long‐term integrated effect of groundwater flow‐induced geochemical weathering of shale in response to climate‐driven patterns of micro‐ and macro‐topography.
more »
« less
Mineral Weathering and Bedrock Weakening: Modeling Microscale Bedrock Damage Under Biotite Weathering
Bedrock weakening is of wide interest because it influences landscape evolution, chemical weathering, and subsurface hydrology. A longstanding hypothesis states that bedrock weakening is driven by chemical weathering of minerals like biotite, which expand as they weather and create stresses sufficient to fracture rock. We build on recent advances in rock damage mechanics to develop a model for the influence of multimineral chemical weathering on bedrock damage, which is defined as the reduction in bedrock stiffness. We use biotite chemical weathering as an example application of this model to explore how the abundance, aspect ratio, and orientation affect the time‐dependent evolution of bedrock damage during biotite chemical weathering. Our simulations suggest that biotite abundance and aspect ratio have a profound effect on the evolution of bedrock damage during biotite chemical weathering. These characteristics exert particularly strong influences on the timing of the onset of damage, which occurs earlier under higher biotite abundances and smaller biotite aspect ratios. Biotite orientation, by contrast, exerts a relatively weak influence on damage. Our simulations further show that damage development is strongly influenced by the boundary conditions, with damage initiating earlier under laterally confined boundaries than under unconfined boundaries. These simulations suggest that relatively minor differences in biotite populations can drive significant differences in the progression of rock weakening. This highlights the need for observations of biotite abundance, aspect ratio, and orientation at the mineral and field scales and motivates efforts to upscale this microscale model to investigate the evolution of the macroscale fracture network.
more »
« less
- PAR ID:
- 10447984
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Earth Surface
- Volume:
- 124
- Issue:
- 11
- ISSN:
- 2169-9003
- Page Range / eLocation ID:
- p. 2623-2646
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The advance of a chemical weathering front into the bedrock of a hillslope is often limited by the rate weathering products that can be carried away, maintaining chemical disequilibrium. If the weathering front is within the saturated zone, groundwater flow downslope may affect the rate of transport and weathering—however, weathering also modifies the rock permeability and the subsurface potential gradient that drives lateral groundwater flow. This feedback may help explain why there tends to be neither “runaway weathering” to great depth nor exposed bedrock covering much of the earth and may provide a mechanism for weathering front advance to keep pace with incision of adjacent streams into bedrock. This is the second of a two‐part paper exploring the coevolution of bedrock weathering and lateral flow in hillslopes using a simple low‐dimensional model based on hydraulic groundwater theory. Here, we show how a simplified kinetic model of 1‐D rock weathering can be extended to consider lateral flow in a 2‐D hillslope. Exact and approximate analytical solutions for the location and thickness of weathering within the hillslope are obtained for a number of cases. A location for the weathering front can be found such that lateral flow is able to export weathering products at the rate required to keep pace with stream incision at steady state. Three pathways of solute export are identified: “diffusing up,” where solutes diffuse up and away from the weathering front into the laterally flowing aquifer; “draining down,” where solutes are advected primarily downward into the unweathered bedrock; and “draining along,” where solutes travel laterally within the weathering zone. For each pathway, a different subsurface topography and overall relief of unweathered bedrock within the hillslope is needed to remove solutes at steady state. The relief each pathway requires depends on the rate of stream incision raised to a different power, such that at a given incision rate, one pathway requires minimal relief and, therefore, likely determines the steady‐state hillslope profile.more » « less
-
Abstract Understanding how soil thickness and bedrock weathering vary across ridge and valley topography is needed to constrain the flowpaths of water and sediment production within a landscape. Here, we investigate saprolite and weathered bedrock properties across a ridge‐valley system in the Northern California Coast Ranges, USA, where topography varies with slope aspect such that north‐facing slopes have thicker soils and are more densely vegetated than south‐facing slopes. We use active source seismic refraction surveys to extend observations made in boreholes to the hillslope scale. Seismic velocity models across several ridges capture a high velocity gradient zone (from 1,000 to 2,500 m/s) located ∼4–13 m below ridgetops that coincides with transitions in material strength and chemical depletion observed in boreholes. Comparing this transition depth across multiple north‐ and south‐facing slopes, we find that the thickness of saprolite does not vary with slope aspects. Additionally, seismic survey lines perpendicular and parallel to bedding planes reveal weathering profiles that thicken upslope and taper downslope to channels. Using a rock physics model incorporating seismic velocity, we estimate the total porosity of the saprolite and find that inherited fractures contribute a substantial amount of pore space in the upper 6 m, and the lateral porosity structure varies strongly with hillslope position. The aspect‐independent weathering structure suggests that the contemporary critical zone structure at Rancho Venada is a legacy of past climate and vegetation conditions.more » « less
-
Abstract Weathering processes weaken and break apart rock, freeing nutrients and enhancing permeability through the subsurface. To better understand these processes, it is useful to constrain physical properties of materials derived from weathering within the critical zone. Foliated rocks exhibit permeability, strength and seismic anisotropy–the former two bear hydrological and geomorphological consequences while the latter is geophysically quantifiable. Each of these types of anisotropy are related to rock fabric (fractures and foliation); thus, characterizing weathering‐dependent changes in rock fabric with depth may have a range of implications (e.g., landslide susceptibility, groundwater modeling, and landscape evolution). To better understand how weathering effects rock fabric, we quantify seismic anisotropy in saprolite and weathered bedrock within two catchments underlain by the Precambrian Loch Raven schist, located in Oregon Ridge Park, MD. Using circular geophone arrays and perpendicular seismic refraction profiles, anisotropy versus depth functions are created for material 0–25 m below ground surface (bgs). We find that anisotropy is relatively low (0%–15%) in the deepest material sampled (12–25 m bgs) but becomes more pronounced (29%–33%) at depths corresponding with saprolite and highly weathered bedrock (5–12 m bgs). At shallow soil depths (0–5 m bgs), material is seismically isotropic, indicating that mixing processes have destroyed parent fabric. Therefore, in situ weathering and anisotropy appear to be correlated, suggesting that in‐place weathering amplifies the intrinsic anisotropy of bedrock.more » « less
-
The depth to unweathered bedrock beneath landscapes influences subsurface runoff paths, erosional processes, moisture availability to biota, and water flux to the atmosphere. Here we propose a quantitative model to predict the vertical extent of weathered rock underlying soil-mantled hillslopes. We hypothesize that once fresh bedrock, saturated with nearly stagnant fluid, is advected into the near surface through uplift and erosion, channel incision produces a lateral head gradient within the fresh bedrock inducing drainage toward the channel. Drainage of the fresh bedrock causes weathering through drying and permits the introduction of atmospheric and biotically controlled acids and oxidants such that the boundary between weathered and unweathered bedrock is set by the uppermost elevation of undrained fresh bedrock, Z b . The slow drainage of fresh bedrock exerts a “bottom up” control on the advance of the weathering front. The thickness of the weathered zone is calculated as the difference between the predicted topographic surface profile (driven by erosion) and the predicted groundwater profile (driven by drainage of fresh bedrock). For the steady-state, soil-mantled case, a coupled analytical solution arises in which both profiles are driven by channel incision. The model predicts a thickening of the weathered zone upslope and, consequently, a progressive upslope increase in the residence time of bedrock in the weathered zone. Two nondimensional numbers corresponding to the mean hillslope gradient and mean groundwater-table gradient emerge and their ratio defines the proportion of the hillslope relief that is unweathered. Field data from three field sites are consistent with model predictions.more » « less