skip to main content


Title: Training Machine Learning Surrogate Models From a High‐Fidelity Physics‐Based Model: Application for Real‐Time Street‐Scale Flood Prediction in an Urban Coastal Community
Abstract

Mitigating the adverse impacts caused by increasing flood risks in urban coastal communities requires effective flood prediction for prompt action. Typically, physics‐based 1‐D pipe/2‐D overland flow models are used to simulate urban pluvial flooding. Because these models require significant computational resources and have long run times, they are often unsuitable for real‐time flood prediction at a street scale. This study explores the potential of a machine learning method, Random Forest (RF), to serve as a surrogate model for urban flood predictions. The surrogate model was trained to relate topographic and environmental features to hourly water depths simulated by a high‐resolution 1‐D/2‐D physics‐based model at 16,914 road segments in the coastal city of Norfolk, Virginia, USA. Two training scenarios for the RF model were explored: (i) training on only the most flood‐prone street segments in the study area and (ii) training on all 16,914 street segments in the study area. The RF model yielded high predictive skill, especially for the scenario when the model was trained on only the most flood‐prone streets. The results also showed that the surrogate model reduced the computational run time of the physics‐based model by a factor of 3,000, making real‐time decision support more feasible compared to using the full physics‐based model. We concluded that machine learning surrogate models strategically trained on high‐resolution and high‐fidelity physics‐based models have the potential to significantly advance the ability to support decision making in real‐time flood management within urban communities.

 
more » « less
Award ID(s):
1735587
NSF-PAR ID:
10448003
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Volume:
56
Issue:
10
ISSN:
0043-1397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Flooding impacts are on the rise globally, and concentrated in urban areas. Currently, there are no operational systems to forecast flooding at spatial resolutions that can facilitate emergency preparedness and response actions mitigating flood impacts. We present a framework for real‐time flood modeling and uncertainty quantification that combines the physics of fluid motion with advances in probabilistic methods. The framework overcomes the prohibitive computational demands of high‐fidelity modeling in real‐time by using a probabilistic learning method relying on surrogate models that are trained prior to a flood event. This shifts the overwhelming burden of computation to the trivial problem of data storage, and enables forecasting of both flood hazard and its uncertainty at scales that are vital for time‐critical decision‐making before and during extreme events. The framework has the potential to improve flood prediction and analysis and can be extended to other hazard assessments requiring intense high‐fidelity computations in real‐time.

     
    more » « less
  2. Abstract

    Many urban coastal communities are experiencing more profound flood impacts due to accelerated sea level rise that sometimes exceed their capacity to protect the built environment. In such cases, relocation may serve as a more effective hazard mitigation and adaptation strategy. However, it is unclear how urban residents living in flood-prone locations perceive the possibility of relocation and under what circumstances they would consider moving. Understanding the factors affecting an individual’s willingness to relocate because of coastal flooding is vital for developing accessible and equitable relocation policies. The main objective of this study is to identify the key considerations that would prompt urban coastal residents to consider permanent relocation because of coastal flooding. We leverage survey data collected from urban areas along the East Coast, assessing attitudes toward relocation, and design an artificial neural network (ANN) and a random forest (RF) model to find patterns in the survey data and indicate which considerations impact the decision to consider relocation. We trained the models to predict whether respondents would relocate because of socioeconomic factors, past exposure and experiences with flooding, and their flood-related concerns. Analyses performed on the models highlight the importance of flood-related concerns that accurately predict relocation behavior. Some common factors among the model analyses are concerns with increasing crime, the possibility of experiencing one more flood per year in the future, and more frequent business closures resulting from flooding.

     
    more » « less
  3. Many coastal cities are facing frequent flooding from storm events that are made worse by sea level rise and climate change. The groundwater table level in these low relief coastal cities is an important, but often overlooked, factor in the recurrent flooding these locations face. Infiltration of stormwater and water intrusion due to tidal forcing can cause already shallow groundwater tables to quickly rise toward the land surface. This decreases available storage which increases runoff, stormwater system loads, and flooding. Groundwater table forecasts, which could help inform the modeling and management of coastal flooding, are generally unavailable. This study explores two machine learning models, Long Short-term Memory (LSTM) networks and Recurrent Neural Networks (RNN), to model and forecast groundwater table response to storm events in the flood prone coastal city of Norfolk, Virginia. To determine the effect of training data type on model accuracy, two types of datasets (i) the continuous time series and (ii) a dataset of only storm events, created from observed groundwater table, rainfall, and sea level data from 2010–2018 are used to train and test the models. Additionally, a real-time groundwater table forecasting scenario was carried out to compare the models’ abilities to predict groundwater table levels given forecast rainfall and sea level as input data. When modeling the groundwater table with observed data, LSTM networks were found to have more predictive skill than RNNs (root mean squared error (RMSE) of 0.09 m versus 0.14 m, respectively). The real-time forecast scenario showed that models trained only on storm event data outperformed models trained on the continuous time series data (RMSE of 0.07 m versus 0.66 m, respectively) and that LSTM outperformed RNN models. Because models trained with the continuous time series data had much higher RMSE values, they were not suitable for predicting the groundwater table in the real-time scenario when using forecast input data. These results demonstrate the first use of LSTM networks to create hourly forecasts of groundwater table in a coastal city and show they are well suited for creating operational forecasts in real-time. As groundwater table levels increase due to sea level rise, forecasts of groundwater table will become an increasingly valuable part of coastal flood modeling and management. 
    more » « less
  4. null (Ed.)
    Abstract Flooding in coastal cities is increasing due to climate change and sea-level rise, stressing the traditional stormwater systems these communities rely on. Automated real-time control (RTC) of these systems can improve performance, and creating control policies for smart stormwater systems is an active area of study. This research explores reinforcement learning (RL) to create control policies to mitigate flood risk. RL is trained using a model of hypothetical urban catchments with a tidal boundary and two retention ponds with controllable valves. RL's performance is compared to the passive system, a model predictive control (MPC) strategy, and a rule-based control strategy (RBC). RL learns to proactively manage pond levels using current and forecast conditions and reduced flooding by 32% over the passive system. Compared to the MPC approach using a physics-based model and genetic algorithm, RL achieved nearly the same flood reduction, just 3% less than MPC, with a significant 88× speedup in runtime. Compared to RBC, RL was able to quickly learn similar control strategies and reduced flooding by an additional 19%. This research demonstrates that RL can effectively control a simple system and offers a computationally efficient method that could scale to RTC of more complex stormwater systems. 
    more » « less
  5. null (Ed.)
    Urban flooding is a major natural disaster that poses a serious threat to the urban environment. It is highly demanded that the flood extent can be mapped in near real-time for disaster rescue and relief missions, reconstruction efforts, and financial loss evaluation. Many efforts have been taken to identify the flooding zones with remote sensing data and image processing techniques. Unfortunately, the near real-time production of accurate flood maps over impacted urban areas has not been well investigated due to three major issues. (1) Satellite imagery with high spatial resolution over urban areas usually has nonhomogeneous background due to different types of objects such as buildings, moving vehicles, and road networks. As such, classical machine learning approaches hardly can model the spatial relationship between sample pixels in the flooding area. (2) Handcrafted features associated with the data are usually required as input for conventional flood mapping models, which may not be able to fully utilize the underlying patterns of a large number of available data. (3) High-resolution optical imagery often has varied pixel digital numbers (DNs) for the same ground objects as a result of highly inconsistent illumination conditions during a flood. Accordingly, traditional methods of flood mapping have major limitations in generalization based on testing data. To address the aforementioned issues in urban flood mapping, we developed a patch similarity convolutional neural network (PSNet) using satellite multispectral surface reflectance imagery before and after flooding with a spatial resolution of 3 meters. We used spectral reflectance instead of raw pixel DNs so that the influence of inconsistent illumination caused by varied weather conditions at the time of data collection can be greatly reduced. Such consistent spectral reflectance data also enhance the generalization capability of the proposed model. Experiments on the high resolution imagery before and after the urban flooding events (i.e., the 2017 Hurricane Harvey and the 2018 Hurricane Florence) showed that the developed PSNet can produce urban flood maps with consistently high precision, recall, F1 score, and overall accuracy compared with baseline classification models including support vector machine, decision tree, random forest, and AdaBoost, which were often poor in either precision or recall. The study paves the way to fuse bi-temporal remote sensing images for near real-time precision damage mapping associated with other types of natural hazards (e.g., wildfires and earthquakes). 
    more » « less