skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Non‐Closure of Surface Energy Balance Linked to Asymmetric Turbulent Transport of Scalars by Large Eddies
Abstract How large turbulent eddies influence non‐closure of the surface energy balance is an active research topic that cannot be uncovered by the mean continuity equation in isolation. It is demonstrated here that asymmetric turbulent flux transport of heat and water vapor by sweeps and ejections of large eddies under unstable atmospheric stability conditions reduce fluxes. Such asymmetry causes positive gradients in the third‐order moments in the turbulent flux budget equations, primarily attributed to substantially reduced flux contributions by sweeps and sustained large flux contributions by ejections. Small‐scale surface heterogeneity in heating generates ejecting eddies with larger air temperature variance than sweeping eddies, causing asymmetric flux transport in the atmospheric surface layer. Changes in asymmetry with increasing instability are congruent with observed increases in the surface energy balance non‐closure. To assess the contributions of asymmetric flux transport by large eddies to the non‐closure requires two eddy covariance systems on the tower to measure the gradients of the turbulent heat flux and other third‐order moments.  more » « less
Award ID(s):
2028633 1754893 1644382
PAR ID:
10448146
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Volume:
126
Issue:
7
ISSN:
2169-897X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Top‐down entrainment shapes the vertical gradients of sensible heat, latent heat, and CO2fluxes, influencing the interpretation of eddy covariance (EC) measurements in the unstable atmospheric surface layer (ASL). Using large eddy simulations for convective boundary layer flows, we demonstrate that decreased temperature gradients across the entrainment zone increase entrainment fluxes by enhancing the entrainment velocity, amplifying the asymmetry between top‐down and bottom‐up flux contributions. These changes alter scalar flux profiles, causing flux divergence or convergence and leading to the breakdown of the constant flux layer assumption (CFLA) in the ASL. As a result, EC‐measured fluxes either underestimate or overestimate “true” surface fluxes during divergence or convergence phases, contributing to energy balance non‐closure. The varying degrees of the CFLA breakdown are a fundamental cause for the non‐closure issue. These findings highlight the underappreciated role of entrainment in interpreting EC fluxes, addressing non‐closure, and understanding site‐to‐site variability in flux measurements. 
    more » « less
  2. Abstract How convective boundary‐layer (CBL) processes modify fluxes of sensible (SH) and latent (LH) heat and CO2(Fc) in the atmospheric surface layer (ASL) remains a recalcitrant problem. Here, large eddy simulations for the CBL show that whileSHin the ASL decreases linearly with height regardless of soil moisture conditions,LHandFcdecrease linearly with height over wet soils but increase with height over dry soils. This varying flux divergence/convergence is regulated by changes in asymmetric flux transport between top‐down and bottom‐up processes. Such flux divergence and convergence indicate that turbulent fluxes measured in the ASL underestimate and overestimate the “true” surface interfacial fluxes, respectively. While the non‐closure of the surface energy balance persists across all soil moisture states, it improves over drier soils due to overestimatedLH. The non‐closure does not imply thatFcis always underestimated;Fccan be overestimated over dry soils despite the non‐closure issue. 
    more » « less
  3. Abstract It is well‐established that large eddies significantly influence the turbulent transport of heat and scalars in the atmospheric surface layer. However, the mechanistic understanding of how large eddies originating from both the ground (updrafts) and aloft (downdrafts) regulate flux convergence (FC) and divergence (FD) remains relatively unexplored. Based on turbulence data measured at 12 levels, spanning from 1.2 to 60.5 m above the ground, we observe a notable increase in the variability of sensible heat flux magnitudes with height. Our results show that FC and FD of sensible heat are primarily linked to variations in the respective transport efficiencies () at different heights. Using the cross‐wavelet transform, we find that in FC cases, the regions with high wavelet coherence expand with height, resulting in higher at higher levels compared to low ones. Conversely, in FD cases, the regions with high wavelet coherence decrease with height, leading to lower at higher levels. Large eddies with length scales of approximately 120–500 m have a significant impact on amplifying or attenuating at higher levels compared to lower levels. Using conditional sampling to extract the updrafts and downdrafts of large eddies, distinct patterns are observed in the characteristics of updrafts and downdrafts between FC and FD groups especially in their flux contribution and transport efficiencies. This work emphasizes the significant contribution of asymmetric turbulent transport by updrafts and downdrafts to the discrepancy between the observed turbulent fluxes and those predicted by the Monin‐Obukhov similarity theory. 
    more » « less
  4. A widely used assumption in boundary layer meteorology is the z independence of turbulent scalar fluxes Fs throughout the atmospheric surface layer, where z is the distance from the boundary. This assumption is necessary for the usage of Monin-Obukhov Similarity Theory and for the interpretation of eddy covariance measurements of Fs when using them to represent emissions or uptake from the surface. It is demonstrated here that the constant flux assumption offers intrinsic constraints on the third-order turbulent transport of Fs in the unstable atmospheric surface layer. When enforcing z independence of Fs on multilevel Fs measurements collected above different surface cover types, it is shown that increasing instability leads to a novel and universal description of (i) the imbalance between ejecting and sweeping eddy contributions to Fs and (ii) the ratio formed by a dimensionless turbulent transport of Fs and a dimensionless turbulent transport of scalar variance. When combined with structural models for the turbulent transport of Fs, these two findings offer a new perspective on “closing” triple moments beyond conventional gradient diffusion schemes. A practical outcome is a diagnostic of the constant flux assumption from single-level Fs measurements. 
    more » « less
  5. Abstract The influence of thermal stratification on the turbulent kinetic energy balance has been widely studied; however, its influence on the turbulent stress remains less explored in the presence of tall vegetated canopies and less ideal micrometeorological conditions. Here, the impact of thermal stratification on turbulent momentum flux is considered in the roughness sublayer (RSL) and the atmospheric surface layer (ASL) using the Amazon Tall Tower Observatory (ATTO) in Brazil. A scalewise co‐spectral budget (CSB) model is developed using standard closure schemes for the pressure–velocity decorrelation. The CSB revealed that the co‐spectrum between longitudinal () and vertical () velocity fluctuations is impacted by the energy spectrum of the vertical velocity and the much less studied longitudinal heat‐flux co‐spectrum , where are temperature fluctuations and is the longitudinal wavenumber. Under stable, very stable, and dynamic–convective conditions, the scaling exponent in for the inertial subrange (ISR) scales is dominated by instead of . A near scaling in robust to large variations in thermal stratification is found, whereas the Kolmogorov ISR scaling for is not found. The scale‐dependent decorrelation time between and is dominated by in the ISR, but is nearly constant for eddies larger than the vertical velocity integral scale, regardless of stability. Implications of these findings for generalized stability correction functions that are based on the turbulent stress budget instead of the turbulent kinetic energy budget are discussed. 
    more » « less