skip to main content


Title: Coastal Groundwater Flow at the Nearshore and Embayment Scales: A Field and Modeling Study
Abstract

Knowledge of coastal groundwater flow is critical for managing coastal groundwater resources and quantifying submarine groundwater discharge (SGD), but this flow occurs over multiple scales that can be difficult to study in an integrated way. We designed a field and modeling study to investigate groundwater flow and the distribution of salinity during sea level rise in a domain that included beaches, salt marshes and the first major confined aquifer, which reached 10–15 km offshore. Numerical models were based on the flat‐lying, passive margin coastline of North Inlet, SC, and were constrained by field studies including subsurface resistivity surveys and hydraulic head observations. Simulations that included tidal fluctuations showed that the salt marsh generated more than three times as much SGD as the beach and inner shelf, per unit length of coastline. Groundwater exchange between scales was small, suggesting that physical fluxes of groundwater can be considered independently at different scales. However, salinization of the first major confined aquifer occurred by downward transport from overlying aquifers rather than intrusion from the seaward end, suggesting that studies of aquifer salinization should consider multiscale flow. During simulated sea level rise, fresh‐to‐brackish groundwater persisted in the first confined aquifer as far as the seaward end of the overlying confining unit, 10–20 km offshore. Total fluxes of SGD decreased significantly with future sea level rise, dominated by declining SGD in the salt marsh, and portending a marked decline in the flux of nutrients and carbon to estuaries and the coastal ocean.

 
more » « less
NSF-PAR ID:
10448168
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Volume:
56
Issue:
10
ISSN:
0043-1397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Future increases in the frequency of tidal flooding due to sea level rise (SLR) are likely to affect pore water salinities in coastal aquifers. In this study, we investigate the impact of increased tidal flooding frequency on salinity and flow dynamics in coastal aquifers using numerical variable‐density variably‐saturated groundwater flow and salt transport models. Short (sub‐daily) and long (decadal) period tides are combined with SLR projections to drive continuous 80‐year models of flow and salt transport. Results show that encroaching intertidal zones lead to both periodic and long‐term vertical salinization of the upper aquifer. Salinization of the upper aquifer due to tidal flooding forces the lower interface seaward, even under SLR. System dynamics are controlled by the interplay between SLR and long period tidal forcing associated with perigean spring tides and the 18.6‐year lunar nodal cycle. Periodic tidal flooding substantially enhances intertidal saltwater‐freshwater mixing, resulting in a 6‐ to 10‐fold expansion of the intertidal saltwater‐freshwater mixing area across SLR scenarios. The onset of the expansion coincides with extreme high water levels resulting from lunar nodal cycling of tidal constituent amplitudes. The findings are the first to demonstrate the combined effects of gradual SLR and short and long period tides on aquifer salinity distributions, and reveal competing influences of SLR on saltwater intrusion. The results are likely to have important implications for coastal ocean chemical fluxes and groundwater resources as tidal flooding intensifies worldwide.

     
    more » « less
  2. Coastal agricultural zones are experiencing salinization due to accelerating rates of sea-level rise, causing reduction in crop yields and abandonment of farmland. Understanding mechanisms and drivers of this seawater intrusion (SWI) is key to mitigating its effects and predicting future vulnerability of groundwater resources to salinization. We implemented a monitoring network of pressure and specific conductivity (SC) sensors in wells and surface waters to target marsh-adjacent agricultural areas in greater Dover, Delaware. Recorded water levels and SC over a period of three years show that the mechanisms and timescales of SWI are controlled by local hydrology, geomorphology, and geology. Monitored wells did not indicate widespread salinization of deep groundwater in the surficial aquifer. However, monitored surface water bodies and shallow (<4m deep) wells did show SC fluctuations due to tides and storm events, in one case leading to salinization of deeper (18m deep) groundwater. Seasonal peaks in SC occurred during late summer months. Seasonal and interannual variation of SC was also influenced by relative sea level. The data collected in this study data highlight the mechanisms by which surface water-groundwater connections lead to salinization of aquifers inland, before SWI is detected in deeper groundwater nearer the coastline. Sharing of our data with stakeholders has led to the implementation of SWI mitigation efforts, illustrating the importance of strategic monitoring and stakeholder engagement to support coastal resilience. 
    more » « less
  3. Abstract

    Low‐elevation coastal areas are increasingly vulnerable to seawater flooding as sea levels rise and the frequency and intensity of large storms increase with climate change. Seawater flooding can lead to the salinization of fresh coastal aquifers by vertical saltwater intrusion (SWI). Vertical SWI is often overlooked in coastal zone threat assessments despite the risk it poses to critical freshwater resources and salt‐intolerant ecosystems that sustain coastal populations. This review synthesizes field and modeling approaches for investigating vertical SWI and the practical and theoretical understanding of salinization and flushing processes obtained from prior studies. The synthesis explores complex vertical SWI dynamics that are influenced by density‐dependent flow and oceanic, hydrologic, geologic, climatic, and anthropogenic forcings acting on coastal aquifers across spatial and temporal scales. Key knowledge gaps, management challenges, and research opportunities are identified to help advance our understanding of the vulnerability of fresh coastal groundwater. Past modeling studies often focus on idealized aquifer systems, and thus future work could consider more diverse geologic, climatic, and topographic environments. Concurrent field and modeling programs should be sustained over time to capture interactions between physical processes, repeated salinization and flushing events, and delayed aquifer responses. Finally, this review highlights the need for improved coordination and knowledge translation across disciplines (e.g., coastal engineering, hydrogeology, oceanography, social science) to gain a more holistic understanding of vertical SWI. There also needs to be more education of communities, policy makers, and managers to motivate societal action to address coastal groundwater vulnerability in a changing climate.

     
    more » « less
  4. Abstract

    Marine tracer studies indicate that large volumes of saline groundwater discharge to the ocean in passive margin settings. These results have not found widespread recognition because the location and cause(s) of this submarine groundwater discharge (SGD) are unclear. Here we report observations from a new long‐term seafloor monitoring network in the South Atlantic Bight that support large‐scale SGD far from shore. In the study area near Charleston, South Carolina, we determined hydrostratigraphy via vibracoring and chirp seismic surveys, collected water samples from seafloor wells, and used heat as a tracer to monitor SGD. We detected significant pulses of saline SGD issuing from the seafloor 10–15 km from shore. These pulses coincided with abrupt sea level declines of up to 30 cm. Based on an analysis of marine conditions at the time, we propose that upwelling‐favorable winds depressed sea level in the region, causing saline groundwater to discharge from confined coastal aquifers that connect land and ocean. The combination of stacked confined aquifers and variations in sea level are nearly ubiquitous in passive coastal margins. This previously overlooked combination can explain a wide range of other published observations and promotes more dynamic flows than simple tidal fluctuations. This new mechanism may explain Ra tracer signals in the coastal Atlantic Ocean and supports significant nutrient inputs to the ocean. These large natural geochemical fluxes may be sensitive to groundwater usage on land.

     
    more » « less
  5. Abstract

    Low‐lying coastlines are vulnerable to sea‐level rise and storm surge salinization, threatening the sustainability of coastal farmland. Most crops are intolerant of salinity, and minimization of saltwater intrusion is critical to crop preservation. Coastal wetlands provide numerous ecosystem services, including attenuation of storm surges. However, most research studying coastal protection by marshes neglects consideration of subsurface salinization. Here, we use two‐dimensional, variable‐density, coupled surface‐subsurface hydrological models to explore how coastal wetlands affect surface and subsurface salinization due to storm surges. We evaluate how marsh width, surge height, and upland slope impact the magnitude of saltwater intrusion and the effect of marsh migration into farmland on crop yield. Results suggest that along topographically low coastlines subject to storm surges, marsh migration into agricultural fields prolongs the use of fields landward of the marsh while also protecting groundwater quality. Under a storm surge height of 3.0 m above mean sea level or higher and terrestrial slope of 0.1%, marsh migration of 200 and 400 m protects agricultural yield landward of the marsh‐farmland interface compared to scenarios without migration, despite the loss of arable land. Economic calculations show that the maintained yields with 200 m of marsh migration may benefit farmers financially. However, yields are not maintained with migration widths over 400 m or surge height under 3.0 m above mean sea level. Results highlight the environmental and economic benefits of marsh migration and the need for more robust compensation programs for landowners incorporating coastal wetland development as a management strategy.

     
    more » « less