Abstract In this report, a high‐performance all‐polymer organic photodetector that is sensitive to linearly polarized light throughout the visible spectrum is demonstrated. The active layer is a bulk heterojunction composed of an electron donor polymer PBnDT‐FTAZ and acceptor polymer P(NDI2OD‐T2) that have complementary spectral absorption resulting in efficient detection from 350 to 800 nm. The blend film exhibits good ductility with the ability to accommodate large strains of over 60% without fracture. This allows the film to undergo large uniaxial strain resulting in in‐plane alignment of both polymers making the film optically anisotropic and intrinsically polarization sensitive. The films are characterized by UV–vis spectroscopy and grazing incidence wide‐angle X‐ray scattering showing that both polymers have similar in‐plane backbone alignment and maintain packing order after being strained. The films are integrated into devices and characterized under linear polarized light. The strain‐oriented detectors have maximum photocurrent anisotropies of 1.4 under transverse polarized light while maintaining peak responsivities of 0.21 A W−1and a 3 dB cutoff frequency of ≈1 kHz. The demonstrated performance is comparable to the current state of the art all‐polymer photodetectors with the added capability of polarization sensitivity enabling new application opportunities.
more »
« less
Ultra‐High Alignment of Polymer Semiconductor Blends Enabling Photodetectors with Exceptional Polarization Sensitivity
Abstract Photodetectors that can sense not only light intensity but also light's polarization state add valuable information that is beneficial in a wide array of applications. Polymer semiconductors are an attractive material system to achieve intrinsic polarization sensitivity due to their anisotropic optoelectronic properties. In this report, the thermomechanical properties of the polymer semiconductors PBnDT‐FTAZ and P(NDI2OD‐T2) are leveraged to realize bulk heterojunction (BHJ) films with record in‐plane alignment. Two polymer blends with distinct weight average molar masses (Mw) are considered and either a strain‐ or rub‐alignment process is applied to align the polymer blend films. Optimized processing yields films with dichroic ratios (DR) of over 11 for the highMwsystem and nearly 17 for the lowMwsystem. Incorporating the aligned films into photodetectors results in a polarized photocurrent ratio of 15.25 with corresponding anisotropy ratio of 0.88 at a wavelength of 530 nm, representing the highest reported photocurrent ratio for photodiodes that can operate in a self‐powered regime. The demonstrated performance showcases the ability of polymer semiconductors to achieve BHJ films with exceptional in‐plane polymer alignment, enabling high performance polarization sensitive photodetectors for incorporation into novel device architectures.
more »
« less
- PAR ID:
- 10448405
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Functional Materials
- Volume:
- 32
- Issue:
- 2
- ISSN:
- 1616-301X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Nanoscopic packing structures crucially determine the charge conduction and the consequent functionalities of organic semiconductors including bulk heterojunctions (BHJs), which are dependent on various processing parameters. Today's high‐performance colloidal quantum dot photovoltaics (CQDPVs) employ functional organic semiconductors as a hole transport layer (HTL). However, the processing of those films replicates a protocol dedicated to high‐performance organic PVs, and thus little is known about how to control the molecular packing structures to maximize the hole extraction function of the HTLs. Herein, it is uncovered that the random‐oriented, but closer‐packed BHJ crystallites, constructed by 1,2‐dichlorobenzene (o‐DCB) as a solvent, allow exceptional charge conduction vertically across the film and restrict diffusion‐driven charge transfer process, enabling ultrafast hole funneling from CQD to BHJ to be extracted. As a result, a power conversion efficiency of 13.66% with high photocurrent >34 mA cm−2is achieved by employingo‐DCB‐processed BHJ HTL, far exceeding the performance of the CQDPV solely employing neat polymer HTL. A charge conduction mechanism associated with the BHJ HTL structure suppressing the bimolecular recombination is proposed. This works not only suggests key principles to control the packing structures of organic HTLs but also opens a new avenue to boost optoelectronic performance.more » « less
-
Abstract The photocurrent multiplication (PM) effect has been used to boost the device performance of polymer‐based photodetectors (PDs), but its origin is rarely addressed. In this study, the origins of the PM effect in polymer PDs based on the P3HT:PC71BM bulk heterojunction (BHJ) composite thin film, where P3HT is poly(3‐hexylthiophene), and PC71BM is [6,6]phenyl‐C71‐butyric acid methyl ester, through both computational simulation and experimental investigation are reported. Systematic studies indicate that two key factors play an important role in the realization of the PM effect in polymer PDs. One factor is the work function of the metal electrode, and the other is the PC71BM aggregations at the interface between the P3HT:PC71BM BHJ composite thin film and the metal electrode. Moreover, the results from both experimental and computational simulation indicate that the values of the current density under light illumination minus the current density in the dark of polymer PDs are increased simultaneously along with the reduction of the thickness of the P3HT:PC71BM BHJ composite thin film. The results provide an understanding of the PM effect in polymer PDs and guidance for the development of high‐performance polymer PDs based on BHJ composite thin film.more » « less
-
Abstract Ruddleson–Popper (RP) perovskites have emerged as a class of material inheriting the superior optoelectronic properties of two materials: perovskites and 2D materials. The large exciton binding energy and natural quantum well structure not only make these materials ideal platforms to study light–matter interactions but also render them suitable for fabrication of various functional optoelectronic devices. Nanoscale structuring and morphology control have led to semiconductors with enhanced functionalities. Nanowires of semiconducting materials are extensively used for important applications like lasing and sensing. However, catalyst and template‐free scalable growth of nanowires of 2D perovskites has remained elusive. In this paper, a facile approach for morphology‐controlled growth of nanowires of 2D perovskite, (BA)2PbI4, is demonstrated. Additionally, it is shown that the photoluminescence (PL) from the nanowires is highly polarized with a polarization ratio as large as ≈0.73, which is one of the largest reported for perovskites. It is further shown that the photocurrent from the hybrid nanowire/graphene device is also sensitive to the polarization of the incident light with the photocurrent anisotropy ratio of ≈3.62 (much larger than the previously reported value of 2.68 for perovskites), thus demonstrating the potential of these nanowires as highly efficient photodetectors for polarized light.more » « less
-
Abstract Despite recent rapid advances in metal halide perovskites for use in optoelectronics, the fundamental understanding of the electrical‐poling‐induced ion migration, accounting for many unusual attributes and thus performance in perovskite‐based devices, remain comparatively elusive. Herein, the electrical‐poling‐promoted polarization potential is reported for rendering hybrid organic–inorganic perovskite photodetectors with high photocurrent and fast response time, displaying a tenfold enhancement in the photocurrent and a twofold decrease in the response time after an external electric field poling. First, a robust meniscus‐assisted solution‐printing strategy is employed to facilitate the oriented perovskite crystals over a large area. Subsequently, the electrical poling invokes the ion migration within perovskite crystals, thus inducing a polarization potential, as substantiated by the surface potential change assessed by Kelvin probe force microscopy. Such electrical‐poling‐induced polarization potential is responsible for the markedly enhanced photocurrent and largely shortened response time. This work presents new insights into the electrical‐poling‐triggered ion migration and, in turn, polarization potential as well as into the implication of the latter for optoelectronic devices with greater performance. As such, the utilization of ion‐migration‐produced polarization potential may represent an important endeavor toward a wide range of high‐performance perovskite‐based photodetectors, solar cells, transistors, scintillators, etc.more » « less
An official website of the United States government
