skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High-quality genomes of Paenibacillus spp. RC334 and RC343, isolated from a long-term forest soil warming experiment
ABSTRACT Paenibacillus spp. RC334 and RC343 were isolated from heated soil in a long-term soil warming experiment. Both genomes were 5.98 Mb and assembled as a single contig. We describe the assembly and annotation of the two high-quality draft genomes for these isolates here.  more » « less
Award ID(s):
1749206 1832210 1949882
PAR ID:
10448496
Author(s) / Creator(s):
; ; ; ; ; ; ;
Editor(s):
Baltrus, David A.
Date Published:
Journal Name:
Microbiology Resource Announcements
Volume:
e00371-23
ISSN:
2576-098X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Nikel, Pablo Ivan (Ed.)
    ABSTRACT Cultured Myxococcota are predominantly aerobic soil inhabitants, characterized by their highly coordinated predation and cellular differentiation capacities. Little is currently known regarding yet-uncultured Myxococcota from anaerobic, nonsoil habitats. We analyzed genomes representing one novel order (o__JAFGXQ01) and one novel family (f__JAFGIB01) in the Myxococcota from an anoxic freshwater spring (Zodletone Spring) in Oklahoma, USA. Compared to their soil counterparts, anaerobic Myxococcota possess smaller genomes and a smaller number of genes encoding biosynthetic gene clusters (BGCs), peptidases, one- and two-component signal transduction systems, and transcriptional regulators. Detailed analysis of 13 distinct pathways/processes crucial to predation and cellular differentiation revealed severely curtailed machineries, with the notable absence of homologs for key transcription factors (e.g., FruA and MrpC), outer membrane exchange receptor (TraA), and the majority of sporulation-specific and A-motility-specific genes. Further, machine learning approaches based on a set of 634 genes informative of social lifestyle predicted a nonsocial behavior for Zodletone Myxococcota . Metabolically, Zodletone Myxococcota genomes lacked aerobic respiratory capacities but carried genes suggestive of fermentation, dissimilatory nitrite reduction, and dissimilatory sulfate-reduction (in f_JAFGIB01) for energy acquisition. We propose that predation and cellular differentiation represent a niche adaptation strategy that evolved circa 500 million years ago (Mya) in response to the rise of soil as a distinct habitat on Earth. IMPORTANCE The phylum Myxococcota is a phylogenetically coherent bacterial lineage that exhibits unique social traits. Cultured Myxococcota are predominantly aerobic soil-dwelling microorganisms that are capable of predation and fruiting body formation. However, multiple yet-uncultured lineages within the Myxococcota have been encountered in a wide range of nonsoil, predominantly anaerobic habitats, and the metabolic capabilities, physiological preferences, and capacity of social behavior of such lineages remain unclear. Here, we analyzed genomes recovered from a metagenomic analysis of an anoxic freshwater spring in Oklahoma, USA, that represent novel, yet-uncultured, orders and families in the Myxococcota . The genomes appear to lack the characteristic hallmarks for social behavior encountered in Myxococcota genomes and displayed a significantly smaller genome size and a smaller number of genes encoding biosynthetic gene clusters, peptidases, signal transduction systems, and transcriptional regulators. Such perceived lack of social capacity was confirmed through detailed comparative genomic analysis of 13 pathways associated with Myxococcota social behavior, as well as the implementation of machine learning approaches to predict social behavior based on genome composition. Metabolically, these novel Myxococcota are predicted to be strict anaerobes, utilizing fermentation, nitrate reduction, and dissimilarity sulfate reduction for energy acquisition. Our results highlight the broad patterns of metabolic diversity within the yet-uncultured Myxococcota and suggest that the evolution of predation and fruiting body formation in the Myxococcota has occurred in response to soil formation as a distinct habitat on Earth. 
    more » « less
  2. Newton, Irene L. (Ed.)
    ABSTRACT Frankiaceae are bacterial endosymbionts that are also found free-living in soil. Here, we present the genome sequences of two novel bacterial members of the order Frankiales , class Actinobacteria , isolated from temperate terrestrial forest soils. The genomes for MT45 and GAS493 indicate a genetic capacity for carbohydrate degradation but not nitrogen fixation. 
    more » « less
  3. Becket, Elinne (Ed.)
    ABSTRACT Here, we present the genomes of two soil actinobacteria:Arthrobactersp. strain AZCC_0090 andMycobacteriumsp. strain AZCC_0083, isolated from oligotrophic subsurface soils in Southern Arizona, USA. 
    more » « less
  4. Abstract The soil amoeba Dictyostelium discoideum acts as both a predator and potential host for diverse bacteria. We tested fifteen Pseudomonas strains that were isolated from transiently infected wild D. discoideum for ability to escape predation and infect D. discoideum fruiting bodies. Three predation-resistant strains frequently caused extracellular infections of fruiting bodies but were not found within spores. Furthermore, infection by one of these species induces secondary infections and suppresses predation of otherwise edible bacteria. Another strain can persist inside of amoebae after being phagocytosed but is rarely taken up. We sequenced isolate genomes and discovered that predation-resistant isolates are not monophyletic. Many Pseudomonas isolates encode secretion systems and toxins known to improve resistance to phagocytosis in other species, as well as diverse secondary metabolite biosynthetic gene clusters that may contribute to predation resistance. However, the distribution of these genes alone cannot explain why some strains are edible and others are not. Each lineage may employ a unique mechanism for resistance. 
    more » « less
  5. Tribble, C (Ed.)
    Abstract The majority of sequenced genomes in the monocots are from species belonging to Poaceae, which include many commercially important crops. Here, we expand the number of sequenced genomes from the monocots to include the genomes of 4 related cyperids: Carex cristatella and Carex scoparia from Cyperaceae and Juncus effusus and Juncus inflexus from Juncaceae. The high-quality, chromosome-scale genome sequences from these 4 cyperids were assembled by combining whole-genome shotgun sequencing of Nanopore long reads, Illumina short reads, and Hi-C sequencing data. Some members of the Cyperaceae and Juncaceae are known to possess holocentric chromosomes. We examined the repeat landscapes in our sequenced genomes to search for potential repeats associated with centromeres. Several large satellite repeat families, comprising 3.2–9.5% of our sequenced genomes, showed dispersed distribution of large satellite repeat clusters across all Carex chromosomes, with few instances of these repeats clustering in the same chromosomal regions. In contrast, most large Juncus satellite repeats were clustered in a single location on each chromosome, with sporadic instances of large satellite repeats throughout the Juncus genomes. Recognizable transposable elements account for about 20% of each of the 4 genome assemblies, with the Carex genomes containing more DNA transposons than retrotransposons while the converse is true for the Juncus genomes. These genome sequences and annotations will facilitate better comparative analysis within monocots. 
    more » « less