Abstract Background Sepsis is a heterogeneous syndrome, and the identification of clinical subphenotypes is essential. Although organ dysfunction is a defining element of sepsis, subphenotypes of differential trajectory are not well studied. We sought to identify distinct Sequential Organ Failure Assessment (SOFA) score trajectory-based subphenotypes in sepsis. Methods We created 72-h SOFA score trajectories in patients with sepsis from four diverse intensive care unit (ICU) cohorts. We then used dynamic time warping (DTW) to compute heterogeneous SOFA trajectory similarities and hierarchical agglomerative clustering (HAC) to identify trajectory-based subphenotypes. Patient characteristics were compared between subphenotypes and a random forest model was developed to predict subphenotype membership at 6 and 24 h after being admitted to the ICU. The model was tested on three validation cohorts. Sensitivity analyses were performed with alternative clustering methodologies. Results A total of 4678, 3665, 12,282, and 4804 unique sepsis patients were included in development and three validation cohorts, respectively. Four subphenotypes were identified in the development cohort: Rapidly Worsening ( n = 612, 13.1%), Delayed Worsening ( n = 960, 20.5%), Rapidly Improving ( n = 1932, 41.3%), and Delayed Improving ( n = 1174, 25.1%). Baseline characteristics, including the pattern of organ dysfunction, varied between subphenotypes. Rapidly Worsening was defined by a higher comorbidity burden, acidosis, and visceral organ dysfunction. Rapidly Improving was defined by vasopressor use without acidosis. Outcomes differed across the subphenotypes, Rapidly Worsening had the highest in-hospital mortality (28.3%, P -value < 0.001), despite a lower SOFA (mean: 4.5) at ICU admission compared to Rapidly Improving (mortality:5.5%, mean SOFA: 5.5). An overall prediction accuracy of 0.78 (95% CI, [0.77, 0.8]) was obtained at 6 h after ICU admission, which increased to 0.87 (95% CI, [0.86, 0.88]) at 24 h. Similar subphenotypes were replicated in three validation cohorts. The majority of patients with sepsis have an improving phenotype with a lower mortality risk; however, they make up over 20% of all deaths due to their larger numbers. Conclusions Four novel, clinically-defined, trajectory-based sepsis subphenotypes were identified and validated. Identifying trajectory-based subphenotypes has immediate implications for the powering and predictive enrichment of clinical trials. Understanding the pathophysiology of these differential trajectories may reveal unanticipated therapeutic targets and identify more precise populations and endpoints for clinical trials.
more »
« less
Comparison of time series clustering methods for identifying novel subphenotypes of patients with infection
Abstract Objective Severe infection can lead to organ dysfunction and sepsis. Identifying subphenotypes of infected patients is essential for personalized management. It is unknown how different time series clustering algorithms compare in identifying these subphenotypes. Materials and Methods Patients with suspected infection admitted between 2014 and 2019 to 4 hospitals in Emory healthcare were included, split into separate training and validation cohorts. Dynamic time warping (DTW) was applied to vital signs from the first 8 h of hospitalization, and hierarchical clustering (DTW-HC) and partition around medoids (DTW-PAM) were used to cluster patients into subphenotypes. DTW-HC, DTW-PAM, and a previously published group-based trajectory model (GBTM) were evaluated for agreement in subphenotype clusters, trajectory patterns, and subphenotype associations with clinical outcomes and treatment responses. Results There were 12 473 patients in training and 8256 patients in validation cohorts. DTW-HC, DTW-PAM, and GBTM models resulted in 4 consistent vitals trajectory patterns with significant agreement in clustering (71–80% agreement, P < .001): group A was hyperthermic, tachycardic, tachypneic, and hypotensive. Group B was hyperthermic, tachycardic, tachypneic, and hypertensive. Groups C and D had lower temperatures, heart rates, and respiratory rates, with group C normotensive and group D hypotensive. Group A had higher odds ratio of 30-day inpatient mortality (P < .01) and group D had significant mortality benefit from balanced crystalloids compared to saline (P < .01) in all 3 models. Discussion DTW- and GBTM-based clustering algorithms applied to vital signs in infected patients identified consistent subphenotypes with distinct clinical outcomes and treatment responses. Conclusion Time series clustering with distinct computational approaches demonstrate similar performance and significant agreement in the resulting subphenotypes.
more »
« less
- Award ID(s):
- 2124104
- PAR ID:
- 10448782
- Date Published:
- Journal Name:
- Journal of the American Medical Informatics Association
- Volume:
- 30
- Issue:
- 6
- ISSN:
- 1067-5027
- Page Range / eLocation ID:
- 1158 to 1166
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Keim-Malpass, Jessica (Ed.)During the early stages of hospital admission, clinicians use limited information to make decisions as patient acuity evolves. We hypothesized that clustering analysis of vital signs measured within six hours of hospital admission would reveal distinct patient phenotypes with unique pathophysiological signatures and clinical outcomes. We created a longitudinal electronic health record dataset for 75,762 adult patient admissions to a tertiary care center in 2014–2016 lasting six hours or longer. Physiotypes were derived via unsupervised machine learning in a training cohort of 41,502 patients applying consensus k -means clustering to six vital signs measured within six hours of admission. Reproducibility and correlation with clinical biomarkers and outcomes were assessed in validation cohort of 17,415 patients and testing cohort of 16,845 patients. Training, validation, and testing cohorts had similar age (54–55 years) and sex (55% female), distributions. There were four distinct clusters. Physiotype A had physiologic signals consistent with early vasoplegia, hypothermia, and low-grade inflammation and favorable short-and long-term clinical outcomes despite early, severe illness. Physiotype B exhibited early tachycardia, tachypnea, and hypoxemia followed by the highest incidence of prolonged respiratory insufficiency, sepsis, acute kidney injury, and short- and long-term mortality. Physiotype C had minimal early physiological derangement and favorable clinical outcomes. Physiotype D had the greatest prevalence of chronic cardiovascular and kidney disease, presented with severely elevated blood pressure, and had good short-term outcomes but suffered increased 3-year mortality. Comparing sequential organ failure assessment (SOFA) scores across physiotypes demonstrated that clustering did not simply recapitulate previously established acuity assessments. In a heterogeneous cohort of hospitalized patients, unsupervised machine learning techniques applied to routine, early vital sign data identified physiotypes with unique disease categories and distinct clinical outcomes. This approach has the potential to augment understanding of pathophysiology by distilling thousands of disease states into a few physiological signatures.more » « less
-
null (Ed.)Abstract COVID-19-associated respiratory failure offers the unprecedented opportunity to evaluate the differential host response to a uniform pathogenic insult. Understanding whether there are distinct subphenotypes of severe COVID-19 may offer insight into its pathophysiology. Sequential Organ Failure Assessment (SOFA) score is an objective and comprehensive measurement that measures dysfunction severity of six organ systems, i.e., cardiovascular, central nervous system, coagulation, liver, renal, and respiration. Our aim was to identify and characterize distinct subphenotypes of COVID-19 critical illness defined by the post-intubation trajectory of SOFA score. Intubated COVID-19 patients at two hospitals in New York city were leveraged as development and validation cohorts. Patients were grouped into mild, intermediate, and severe strata by their baseline post-intubation SOFA. Hierarchical agglomerative clustering was performed within each stratum to detect subphenotypes based on similarities amongst SOFA score trajectories evaluated by Dynamic Time Warping. Distinct worsening and recovering subphenotypes were identified within each stratum, which had distinct 7-day post-intubation SOFA progression trends. Patients in the worsening suphenotypes had a higher mortality than those in the recovering subphenotypes within each stratum (mild stratum, 29.7% vs. 10.3%, p = 0.033; intermediate stratum, 29.3% vs. 8.0%, p = 0.002; severe stratum, 53.7% vs. 22.2%, p < 0.001). Pathophysiologic biomarkers associated with progression were distinct at each stratum, including findings suggestive of inflammation in low baseline severity of illness versus hemophagocytic lymphohistiocytosis in higher baseline severity of illness. The findings suggest that there are clear worsening and recovering subphenotypes of COVID-19 respiratory failure after intubation, which are more predictive of outcomes than baseline severity of illness. Distinct progression biomarkers at differential baseline severity of illness suggests a heterogeneous pathobiology in the progression of COVID-19 respiratory failure.more » « less
-
null (Ed.)Background With advances in digital health technologies and proliferation of biomedical data in recent years, applications of machine learning in health care and medicine have gained considerable attention. While inpatient settings are equipped to generate rich clinical data from patients, there is a dearth of actionable information that can be used for pursuing secondary research for specific clinical conditions. Objective This study focused on applying unsupervised machine learning techniques for traumatic brain injury (TBI), which is the leading cause of death and disability among children and adults aged less than 44 years. Specifically, we present a case study to demonstrate the feasibility and applicability of subspace clustering techniques for extracting patterns from data collected from TBI patients. Methods Data for this study were obtained from the Progesterone for Traumatic Brain Injury, Experimental Clinical Treatment–Phase III (PROTECT III) trial, which included a cohort of 882 TBI patients. We applied subspace-clustering methods (density-based, cell-based, and clustering-oriented methods) to this data set and compared the performance of the different clustering methods. Results The analyses showed the following three clusters of laboratory physiological data: (1) international normalized ratio (INR), (2) INR, chloride, and creatinine, and (3) hemoglobin and hematocrit. While all subclustering algorithms had a reasonable accuracy in classifying patients by mortality status, the density-based algorithm had a higher F1 score and coverage. Conclusions Clustering approaches serve as an important step for phenotype definition and validation in clinical domains such as TBI, where patient and injury heterogeneity are among the major reasons for failure of clinical trials. The results from this study provide a foundation to develop scalable clustering algorithms for further research and validation.more » « less
-
Abstract Overly restrictive eligibility criteria for clinical trials may limit the generalizability of the trial results to their target real-world patient populations. We developed a novel machine learning approach using large collections of real-world data (RWD) to better inform clinical trial eligibility criteria design. We extracted patients’ clinical events from electronic health records (EHRs), which include demographics, diagnoses, and drugs, and assumed certain compositions of these clinical events within an individual’s EHRs can determine the subphenotypes—homogeneous clusters of patients, where patients within each subgroup share similar clinical characteristics. We introduced an outcome-guided probabilistic model to identify those subphenotypes, such that the patients within the same subgroup not only share similar clinical characteristics but also at similar risk levels of encountering severe adverse events (SAEs). We evaluated our algorithm on two previously conducted clinical trials with EHRs from the OneFlorida+ Clinical Research Consortium. Our model can clearly identify the patient subgroups who are more likely to suffer or not suffer from SAEs as subphenotypes in a transparent and interpretable way. Our approach identified a set of clinical topics and derived novel patient representations based on them. Each clinical topic represents a certain clinical event composition pattern learned from the patient EHRs. Tested on both trials, patient subgroup (#SAE=0) and patient subgroup (#SAE>0) can be well-separated by k-means clustering using the inferred topics. The inferred topics characterized as likely to align with the patient subgroup (#SAE>0) revealed meaningful combinations of clinical features and can provide data-driven recommendations for refining the exclusion criteria of clinical trials. The proposed supervised topic modeling approach can infer the clinical topics from the subphenotypes with or without SAEs. The potential rules for describing the patient subgroups with SAEs can be further derived to inform the design of clinical trial eligibility criteria.more » « less
An official website of the United States government

